微分積分学 III 講義ノート

柿澤 亮平

島根大学学術研究院 教育学系 数学科教育専攻

目 次

第1章	ベクトル空間	1
1.1	ベクトル空間上の内積	1
1.2	ベクトル空間上の位相	
1.3	点列の極限	
第2章	多変数関数の微分法	11
2.1	関数の極限	11
2.2	連続関数, 一様連続関数, 半連続関数	18
2.3	全導関数と接平面	26
第3章	Taylor の定理, 陰関数定理	38
3.1	高階偏導関数	38
3.2	Taylor の定理と関数の極大・極小	42
3.3	陰関数定理と関数の条件付き極値	46
第4章	多変数関数の積分法	4 9
4.1	有界閉区間での多重積分	49
4.2	一般の集合での多重積分	55
4.3	変数変換公式	63
4.4		65
第5章	ベクトル場の微積分法	6 9
5.1	ベクトル場とその微分	69
5.2	線積分とその基本性質	74
5.3	Green の定理, Gauss の定理	
5.4		85

第1章 ベクトル空間

1.1 ベクトル空間上の内積

● ベクトル空間

定義 1.1.1. $x_1, x_2 \in \mathbb{R}$ を

$$x = (x_1, x_2)$$

のように並べたものを**2次ベクトル**と言う. また, 2次ベクトル全体の集合を

$$\mathbb{R}^2 = \{ x = (x_1, x_2) \; ; \; x_1, x_2 \in \mathbb{R} \}$$

と書く.

定義 1.1.2. 2 次ベクトルの相等・加法・スカラー乗法を

- (1) (相等) $\forall x, y \in \mathbb{R}^2$, $(x = y \Leftrightarrow (x_1 = y_1) \land (x_2 = y_2))$.
- (2) $(\text{mli}) x + y = (x_1 + y_1, x_2 + y_2) (x, y \in \mathbb{R}^2).$
- (3) (スカラー乗法) $ax = (ax_1, ax_2)$ $(a \in \mathbb{R}, x \in \mathbb{R}^2)$.

によって定義する.

命題 1.1.1. \mathbb{R}^2 は 2 次ベクトルの加法・スカラー乗法について**線型空間**である. つまり, 次の (i)–(viii) を満たす.

- (i) (x+y) + z = x + (y+z) $(x, y, z \in \mathbb{R}^2)$.
- (ii) $\exists !0 = (0,0) \in \mathbb{R}^2, \forall x \in \mathbb{R}^2, x + 0 = x = 0 + x.$
- (iii) $\forall x = (x_1, x_2) \in \mathbb{R}^2, \exists ! -x = (-x_1, -x_2) \in \mathbb{R}^2, x + (-x) = 0 = (-x) + x.$
- (iv) $x + y = y + x \ (x, y \in \mathbb{R}^2)$.
- (v) (ab)x = a(bx) $(a, b \in \mathbb{R}, x \in \mathbb{R}^2)$.
- (vi) $1x = x \ (x \in \mathbb{R}^2)$.
- (vii) $(a+b)x = ax + bx \ (a, b \in \mathbb{R}, \ x \in \mathbb{R}^2).$
- (viii) $a(x+y) = ax + ay \ (a \in \mathbb{R}, \ x, y \in \mathbb{R}^2).$

証明. 省略(微分積分学I).

注意 (減法). (iii) の x + (-y) を x - y と書く.

● ベクトル空間上の内積・ノルム・距離

定義 1.1.3. 任意の $x, y \in \mathbb{R}^2$ に対し,

$$\langle x, y \rangle = \sum_{i=1}^{2} x_i y_i$$

を x と y の**内積**と言う.

命題 1.1.2. $(\mathbb{R}^2, \langle *, * \rangle)$ は**内積空間**である. つまり, 次の (i)–(iv) を満たす.

- (i) $\forall x \in \mathbb{R}^2$, $(\langle x, x \rangle \ge 0) \land (\langle x, x \rangle = 0 \Leftrightarrow x = 0)$.
- (ii) $\langle x, y \rangle = \langle y, x \rangle$ $(x, y \in \mathbb{R}^2)$.
- (iii) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle \ (x, y, z \in \mathbb{R}^2).$
- (iv) $\langle ax, y \rangle = a \langle x, y \rangle$ $(a \in \mathbb{R}, x, y \in \mathbb{R}^2)$.

証明. 省略 (講義の自筆ノート).

定義 1.1.4. 任意の $x \in \mathbb{R}^2$ に対し,

$$|x| = \sqrt{\langle x, x \rangle}$$

をxのノルムまたは絶対値と言う.

命題 1.1.3.

- (1) $|x_1| \le |x| \ (x \in \mathbb{R}^2)$.
- (2) $|x_2| \le |x| \ (x \in \mathbb{R}^2).$
- (3) $|x| \le |x_1| + |x_2| \ (x \in \mathbb{R}^2).$

証明. 省略 (講義の自筆ノート).

命題 1.1.4 (Schwarz の不等式). 任意の $x, y \in \mathbb{R}^2$ に対して

$$|\langle x,y\rangle| \leq |x||y|$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 1.1.5. (\mathbb{R}^2 , |*|) は**ノルム空間**である. つまり, 次の (i)–(iii) を満たす.

- (i) $\forall x \in \mathbb{R}^2$, $(|x| \ge 0) \land (|x| = 0 \Leftrightarrow x = 0)$.
- (ii) (三角不等式) $|x+y| \le |x| + |y|$ $(x, y \in \mathbb{R}^2)$.
- (iii) |ax| = |a||x| $(a \in \mathbb{R}, x \in \mathbb{R}^2)$.

証明. 省略 (講義の自筆ノート).

命題 1.1.6. 任意の $x, y \in \mathbb{R}^2 \setminus \{0\}$ に対し,

$$\langle x, y \rangle = |x||y|\cos\theta$$

を満たす $0 \le \theta \le \pi$ が一意に存在する.

証明. 省略 (講義の自筆ノート).

定義 1.1.5. 任意の $x,y \in \mathbb{R}^2 \setminus \{0\}$ に対し、命題 1.1.6 の $0 \le \theta \le \pi$ を x と y のなす角の弧度と言う.

定義 1.1.6. 任意の $x, y \in \mathbb{R}^2$ に対し,

$$d(x,y) = |x - y|$$

をxとyの距離と言う.

命題 1.1.7. (\mathbb{R}^2, d) は**距離空間**である. つまり, 次の (i)–(iii) を満たす.

- (i) $\forall x, y \in \mathbb{R}^2$, $(d(x, y) \ge 0) \land (d(x, y) = 0 \Leftrightarrow x = y)$.
- (ii) (三角不等式) $d(x,z) \le d(x,y) + d(y,z)$ $(x,y,z \in \mathbb{R}^2)$.
- (iii) $d(x,y) = d(y,x) \ (x,y \in \mathbb{R}^2).$

証明. 省略 (講義の自筆ノート).

1.2 ベクトル空間上の位相

● ベクトル空間の開集合・閉集合

定義 1.2.1. $d \in \{1,2\}$ とする. 任意の $x \in \mathbb{R}^d$, r > 0 に対し,

$$B_r(x) = \{ y \in \mathbb{R}^d \; ; \; |y - x| < r \}$$

をxを中心とする半径rの開球と言う.

定義 1.2.2. $d \in \{1,2\}, x \in \mathbb{R}^d, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, A^c を \mathbb{R}^d に対する A の補集合とする.

(1) $B_r(x) \subset A$ を満たすr > 0 が存在するとき, x を A の内点と言う. また, A の内点全体の集合を

$$A^i = \{ x \in \mathbb{R}^d ; \exists r > 0, B_r(x) \subseteq A \}$$

と書き, A^i を A の内部 (interior) または開核 (open kernel) と言う.

(2) $B_r(x) \subset A^c$ を満たす r > 0 が存在するとき, x を A の**外点**と言う. また, A の外点全体の集合を

$$A^e = \{ x \in \mathbb{R}^d ; \exists r > 0, B_r(x) \subseteq A^c \}$$

と書き, A^e を A の外部 (exterior) と言う.

(3) 任意の r > 0 に対して $(B_r(x) \cap A \neq \emptyset) \wedge (B_r(x) \cap A^c \neq \emptyset)$ のとき, x を A の境界点と言う. また, A の境界点全体の集合を

$$A^f = \{x \in \mathbb{R}^d : \forall r > 0, (B_r(x) \cap A \neq \emptyset) \land (B_r(x) \cap A^c \neq \emptyset)\}$$

と書き, A^f を A の境界 (frontier) と言う.

(4) 任意のr > 0 に対して $B_r(x) \cap A \neq \emptyset$ のとき, x を A の触点と言う. また, A の触点全体の集合を

$$\overline{A} = \{x \in \mathbb{R}^d : \forall r > 0, B_r(x) \cap A \neq \emptyset\}$$

と書き, \overline{A} を A の**閉包** (closure) と言う.

注意. $d \in \{1,2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合とする.

- (1) $A^i \subseteq A \subseteq \overline{A}$.
- (2) $\{A^i, A^f\}$ は \overline{A} の**直和分解**である. つまり, 次の(i), (ii) を満たす.
 - (i) $A^i \cup A^f = \overline{A}$.
 - (ii) $A^i \cap A^f = \emptyset$.
- (3) $\{A^i, A^e, A^f\}$ は \mathbb{R}^d の**直和分解**である. つまり, 次の (i), (ii) を満たす.
 - (i) $A^i \cup A^e \cup A^f = \mathbb{R}^d$.
 - (ii) $A^i \cap A^e = \emptyset$, $A^i \cap A^f = \emptyset$, $A^e \cap A^f = \emptyset$.

注意. 定義 1.2.2(1) の A^i を A^o と書き, 定義 1.2.2(3) の A^f を ∂A と書くことがある.

定義 1.2.3. $d \in \{1, 2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合とする.

(1) A が開であるとは, A が $A = A^i$ を満たすことを言う. また, \mathbb{R}^d の開集合全体の集合を

$$\mathcal{O} = \{ U \subseteq \mathbb{R}^d \; ; \; U = U^i \}$$

と書き, \mathcal{O} を \mathbb{R}^d 上の**開集合系**または**位相**と言う.

(2) A が**閉**であるとは, A が $A = \overline{A}$ を満たすことを言う. また, \mathbb{R}^d の閉集合全体の集合を

$$\mathcal{A} = \{ F \subseteq \mathbb{R}^d \; ; \; F = \overline{F} \}$$

と書き、A を \mathbb{R}^d 上の**閉集合系**と言う.

例 (\mathbb{R}^2 の開球). $x_0 \in \mathbb{R}^2$, $r_0 > 0$ とすると, $B_{r_0}(x_0) = \{x \in \mathbb{R}^2 \; ; \; |x - x_0| < r_0\}$ は開である. 証明. 省略 (講義の自筆ノート).

例 (\mathbb{R}^2 の閉球). $x_0 \in \mathbb{R}^2$, $r_0 > 0$ とすると,

$$\overline{B_{r_0}(x_0)} = \{x \in \mathbb{R}^2 \; ; \; |x - x_0| \le r_0 \}$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 1.2.1. $d \in \{1, 2\}$ とすると, $\mathcal{A} = \{F \subseteq \mathbb{R}^d ; F^c \in \mathcal{O}\}.$

証明. 省略 (講義の自筆ノート).

注意. $d \in \{1,2\}$, $A \subset \mathbb{R}^d$ を \mathbb{R}^d の部分集合とすると, 次の命題

- (1) $A \notin \mathcal{O} \Rightarrow A \in \mathcal{A}$ (開でない \Rightarrow 閉である).
- (2) $A \notin A \Rightarrow A \in \mathcal{O}$ (閉でない \Rightarrow 開である).

は偽である.

例 (空集合, 普遍集合). $d \in \{1,2\}$ とする.

- (1) $\emptyset \in \mathcal{O} \cap \mathcal{A}$.
- (2) $\mathbb{R}^d \in \mathcal{O} \cap \mathcal{A}$.

証明. 省略 (講義の自筆ノート).

例 (\mathbb{R}^2 の円環). 0 < a < b とする.

- (1) $A = \{x \in \mathbb{R}^2 : a < |x| \le b\} \notin \mathcal{O} \cup \mathcal{A}.$
- (2) $A = \{x \in \mathbb{R}^2 : a \le |x| < b\} \notin \mathcal{O} \cup \mathcal{A}.$

証明. 省略(講義の自筆ノート).

● ベクトル空間の連結集合・コンパクト集合

定義 1.2.4. $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合とする.

- (1) A が連結であるとは、次の (i), (ii) を満たす \mathbb{R}^d の開集合 $U, V \subseteq \mathbb{R}^d$ が存在しないことを言う.
 - (i) $U \cap A \neq \emptyset$, $V \cap A \neq \emptyset$.
 - (ii) $\{U \cap A, V \cap A\}$ は A の直和分解である.
- (2) A が**領域**であるとは, A が連結かつ開であることを言う.

定義 1.2.5. $d \in \{1, 2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合とする.

(1) A が**有界**であるとは、

$$A \subseteq \overline{B_r(x)}$$

を満たす $x \in \mathbb{R}^d$, $r \ge 0$ が存在することを言う.

(2) A が**コンパクト**であるとは, A が有界かつ閉であることを言う.

1.3 点列の極限

● 点列の収束・発散

定義 1.3.1. $a: \mathbb{N} \to \mathbb{R}^2$ を \mathbb{R}^2 の点列と言う. このとき,

$$a(n) = a_n \quad (n \in \mathbb{N}), \quad a = \{a_n\}_{n \in \mathbb{N}}$$

と書き, a_n を $\{a_n\}_{n\in\mathbb{N}}$ の一般項と言う.

定義 1.3.2 $(\varepsilon - N$ 論法). $\{a_n\}_{n \in \mathbb{N}}$ を \mathbb{R}^2 の点列とする. $n \to \infty$ のとき, a_n が $\alpha \in \mathbb{R}^2$ に**収束**するとは, 任意の $\varepsilon > 0$ に対してある $N(\varepsilon) \in \mathbb{N}$ が存在し, $n > N(\varepsilon)$ を満たす任意の $n \in \mathbb{N}$ に対して

$$|a_n - \alpha| < \varepsilon$$

が成り立つことを言う. このとき, $\lim_{n\to\infty} a_n = \alpha$ と書く.

・定義 1.3.2 の論理式

$$\forall \varepsilon > 0, \ \exists N(\varepsilon) \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ (n \ge N(\varepsilon) \Rightarrow |a_n - \alpha| < \varepsilon).$$

定義 1.3.3 (M-N 論法). $\{a_n\}_{n\in\mathbb{N}}$ を \mathbb{R}^2 の点列とする. $n\to\infty$ のとき, a_n が ∞ に発散するとは, 任意の M>0 に対してある $N(M)\in\mathbb{N}$ が存在し, $n\geq N(M)$ を満たす任意の $n\in\mathbb{N}$ に対して

$$|a_n| > M$$

が成り立つことを言う. このとき, $\lim_{n\to\infty} a_n = \infty$ と書く.

定義 1.3.3 の論理式 -

$$\forall M > 0, \ \exists N(M) \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ (n \ge N(M) \Rightarrow |a_n| > M).$$

注意. 点列の有限個の項を付け加えたり取り除いたりしても, その点列の収束・発散には関係しない.

命題 1.3.1. $\{a_n\}_{n\in\mathbb{N}}$ を \mathbb{R}^2 の点列とするとき, $\{a_n\}_{n\in\mathbb{N}}$ が収束すれば, $\lim_{n\to\infty}a_n$ は一意である.

証明. 省略(微分積分学I).

定義 1.3.4. $\{a_n\}_{n\in\mathbb{N}}$ を \mathbb{R}^2 の点列とし, $a(\mathbb{N})=\{a_n\;|\;n\in\mathbb{N}\}\subseteq\mathbb{R}^2$ とおく. $\{a_n\}_{n\in\mathbb{N}}$ が有界であるとは,

$$a(\mathbb{N}) \subset \overline{B_M(0)}$$

を満たす $M \ge 0$ が存在することを言う.

- 定義 1.3.4 の論理式 -

$$\exists M \geq 0, \ \forall n \in \mathbb{N}, \ |a_n| \leq M.$$

命題 1.3.2. $\{a_n\}_{n\in\mathbb{N}}$ を \mathbb{R}^2 の点列とする.

- (1) $\{a_n\}_{n\in\mathbb{N}}$ が収束すれば, $\{a_n\}_{n\in\mathbb{N}}$ は有界である.
- (2) $\{a_n\}_{n\in\mathbb{N}}$ が収束し、かつ $\lim_{n\to\infty}a_n\neq 0$ ならば、ある $N\in\mathbb{N}$ が存在し、 $n\geq N$ を満たす任意の $n\in\mathbb{N}$ に対して

$$|a_n| > \frac{1}{2} \left| \lim_{n \to \infty} a_n \right|$$

が成り立つ.

証明. 省略 (微分積分学 I).

命題 1.3.3 (和・スカラー倍の極限). $\{a_n\}_{n\in\mathbb{N}},\,\{b_n\}_{n\in\mathbb{N}}$ を \mathbb{R}^2 の点列, $c\in\mathbb{R}$ とする.

(1) $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ が収束すれば, $\{a_n+b_n\}_{n\in\mathbb{N}}$ は収束し,

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

が成り立つ.

(2) $\{a_n\}_{n\in\mathbb{N}}$ が収束すれば, $\{ca_n\}_{n\in\mathbb{N}}$ は収束し,

$$\lim_{n \to \infty} (ca_n) = c \lim_{n \to \infty} a_n$$

が成り立つ.

証明. 省略 (微分積分学 I).

注意. \mathbb{R}^2 には全順序が存在しないので, \mathbb{R}^2 の点列に対する

- (1) 極限の単調性
- (2) はさみうちの原理

は、命題として存在しない.

● Bolzano-Weierstrassの定理

命題 1.3.4. $\{a_n=(a_{1,n},a_{2,n})\}_{n\in\mathbb{N}}$ を \mathbb{R}^2 の点列とすると, 次の (i), (ii) は同値である.

- (i) $\{a_n\}_{n\in\mathbb{N}}$ は \mathbb{R}^2 に収束する.
- (ii) $\{a_{1,n}\}_{n\in\mathbb{N}}$, $\{a_{2,n}\}_{n\in\mathbb{N}}$ は \mathbb{R} に収束する.

さらに, $\{a_n\}_{n\in\mathbb{N}}$ が (i) または (ii) を満たせば,

$$\lim_{n \to \infty} a_n = \left(\lim_{n \to \infty} a_{1,n}, \lim_{n \to \infty} a_{2,n}\right)$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 1.3.5. $\{a_n=(a_{1,n},a_{2,n})\}_{n\in\mathbb{N}}$ を \mathbb{R}^2 の点列とすると, 次の (i), (ii) は同値である.

- (i) $\{a_n\}_{n\in\mathbb{N}}$ は \mathbb{R}^2 で有界である.
- (ii) $\{a_{1,n}\}_{n\in\mathbb{N}}$, $\{a_{2,n}\}_{n\in\mathbb{N}}$ は \mathbb{R} で有界である.

証明. 省略 (講義の自筆ノート).

定義 1.3.5. $n: \mathbb{N} \to \mathbb{N}$ を \mathbb{N} から \mathbb{N} への写像, $a = \{a_n\}_{n \in \mathbb{N}}$ を \mathbb{R}^2 の点列とする.

- (1) n が**狭義単調増加**であるとは、任意の $k \in \mathbb{N}$ に対して n(k) < n(k+1) のことを言う.
- (2) n が狭義単調増加のとき, $a \circ n : \mathbb{N} \to \mathbb{N} \to \mathbb{R}^2$ を a の部分列と言う. このとき,

$$a \circ n(k) = a_{n(k)} \quad (k \in \mathbb{N}), \quad a \circ n = \{a_{n(k)}\}_{k \in \mathbb{N}}$$

と書き, $a_{n(k)}$ を $\{a_{n(k)}\}_{k\in\mathbb{N}}$ の一般項と言う.

命題 1.3.6. $n: \mathbb{N} \to \mathbb{N}$ を \mathbb{N} から \mathbb{N} への写像, $\{a_n\}_{n\in\mathbb{N}}$ を \mathbb{R}^2 の点列とする.

- (1) n が狭義単調増加ならば、任意の $k \in \mathbb{N}$ に対して $k \le n(k)$.
- (2) $\{a_n\}_{n\in\mathbb{N}}$ が収束すれば, $\{a_n\}_{n\in\mathbb{N}}$ の任意の部分列 $\{a_{n(k)}\}_{k\in\mathbb{N}}$ に対して $\lim_{k\to\infty}a_{n(k)}=\lim_{n\to\infty}a_n$.

証明. 省略 (微分積分学 I).

定理 1.3.1 (Bolzano-Weierstrass の定理). $\{a_n\}_{n\in\mathbb{N}}$ を \mathbb{R}^2 の点列とするとき, $\{a_n\}_{n\in\mathbb{N}}$ が有界ならば, $\{a_n\}_{n\in\mathbb{N}}$ の収束する部分列が存在する.

証明. 省略 (講義の自筆ノート).

• Cauchy の定理

定義 1.3.6. $\{a_n\}_{n\in\mathbb{N}}$ を \mathbb{R}^2 の点列とする. $\{a_n\}_{n\in\mathbb{N}}$ が \mathbb{R}^2 の Cauchy 列であるとは, 任意の $\varepsilon>0$ に対してある $N(\varepsilon)\in\mathbb{N}$ が存在し, $m,n\geq N(\varepsilon)$ を満たす任意の $m,n\in\mathbb{N}$ に対して

$$|a_n - a_m| < \varepsilon$$

が成り立つことを言う.

- 定義 1.3.6 の論理式 -

 $\forall \varepsilon > 0, \ \exists N(\varepsilon) \in \mathbb{N}, \ \forall m, n \in \mathbb{N}, \ (m, n \ge N(\varepsilon) \Rightarrow |a_n - a_m| < \varepsilon).$

命題 1.3.7. $\{a_n=(a_{1,n},a_{2,n})\}_{n\in\mathbb{N}}$ を \mathbb{R}^2 の点列とすると, 次の (i), (ii) は同値である.

- (i) $\{a_n\}_{n\in\mathbb{N}}$ は \mathbb{R}^2 の Cauchy 列である.
- (ii) $\{a_{1,n}\}_{n\in\mathbb{N}}$, $\{a_{2,n}\}_{n\in\mathbb{N}}$ は \mathbb{R} の Cauchy 列である.

証明. 省略 (講義の自筆ノート).

命題 1.3.8. \mathbb{R}^2 の点列 $\{a_n\}_{n\in\mathbb{N}}$ が収束すれば, $\{a_n\}_{n\in\mathbb{N}}$ は \mathbb{R}^2 の Cauchy 列である.

証明. 省略 (講義の自筆ノート).

注意 (命題 1.3.8 の対偶). \mathbb{R}^2 の点列 $\{a_n\}_{n\in\mathbb{N}}$ が Cauchy 列でなければ, $\{a_n\}_{n\in\mathbb{N}}$ は \mathbb{R}^2 に収束しない.

定理 1.3.2 (Cauchy の定理). \mathbb{R}^2 の点列 $\{a_n\}_{n\in\mathbb{N}}$ が Cauchy 列ならば, $\{a_n\}_{n\in\mathbb{N}}$ は \mathbb{R}^2 に収束する.

証明. 省略 (講義の自筆ノート).

注意. \mathbb{R}^2 には全順序が存在しないので, \mathbb{R}^2 に対する

- (1) Dedekind の公理
- (2) 上限公理
- (3) 下限公理
- (4) 単調増加収束公理
- (5) 単調減少収束公理
- (6) Archimedes の公理
- (7) Cantor の公理

は、命題として存在しない.

第2章 多変数関数の微分法

2.1 関数の極限

● スカラー値関数の極限

定義 2.1.1. A を集合とする. $f: A \to \mathbb{R}$ を A 上の関数またはスカラー値関数と言う.

定義 2.1.2 (ε - δ 論法). $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A$, $f: A \setminus \{a\} \to \mathbb{R}$ を $A \setminus \{a\}$ 上の関数とする. $x \to a$ のとき, f(x) が $\alpha \in \mathbb{R}$ に収束するとは, 任意の $\varepsilon > 0$ に対してある $\delta(\varepsilon) > 0$ が存在し, $0 < |x - a| < \delta(\varepsilon)$ を満たす任意の $x \in A$ に対して

$$|f(x) - \alpha| < \varepsilon$$

が成り立つことを言う. このとき, $\lim_{x\to a} f(x) = \alpha$ と書く.

定義 2.1.2 の論理式

$$\forall \varepsilon > 0, \ \exists \delta(\varepsilon) > 0, \ \forall x \in A, \ (0 < |x - a| < \delta(\varepsilon) \Rightarrow |f(x) - \alpha| < \varepsilon).$$

定義 2.1.3 $(M-\delta$ 論法). $d \in \{1,2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A$, $f: A \setminus \{a\} \to \mathbb{R}$ を $A \setminus \{a\}$ 上の 関数とする. $x \to a$ のとき, f(x) が ∞ に発散するとは, 任意の M>0 に対してある $\delta(M)>0$ が存在 し, $0<|x-a|<\delta(M)$ を満たす任意の $x \in A$ に対して

が成り立つことを言う. このとき, $\lim_{x\to a} f(x) = \infty$ と書く.

・定義 2.1.3 の論理式

$$\forall M > 0, \ \exists \delta(M) > 0, \ \forall x \in A, \ (0 < |x - a| < \delta(M) \Rightarrow f(x) > M).$$

定義 2.1.4 $(M-\delta$ 論法). $d \in \{1,2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A$, $f: A \setminus \{a\} \to \mathbb{R}$ を $A \setminus \{a\}$ 上の 関数とする. $x \to a$ のとき, f(x) が $-\infty$ に発散するとは, 任意の M>0 に対してある $\delta(M)>0$ が存在 し, $0<|x-a|<\delta(M)$ を満たす任意の $x \in A$ に対して

$$f(x) < -M$$

が成り立つことを言う. このとき, $\lim_{x\to a} f(x) = -\infty$ と書く.

定義 2.1.4 の論理式

$$\forall M > 0, \ \exists \delta(M) > 0, \ \forall x \in A, \ (0 < |x - a| < \delta(M) \Rightarrow f(x) < -M).$$

命題 2.1.1. $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A$, $f: A \setminus \{a\} \to \mathbb{R}$ を $A \setminus \{a\}$ 上の関数とする. $x \to a$ のとき, f(x) が収束すれば, $\lim_{x \to a} f(x)$ は一意である.

証明. 省略 (微分積分学 I).

例、 $\mathbb{R}^2 \setminus \{(0,0)\}$ 上の関数 $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ を

$$f(x,y) = \frac{2xy}{x^2 + y^2}$$
 $((x,y) \in \mathbb{R}^2, (x,y) \neq (0,0))$

によって定義すると, $(x,y) \rightarrow (0,0)$ のとき, f(x,y) は収束しない.

証明. 省略 (講義の自筆ノート).

定義 2.1.5. A を集合, $f: A \to \mathbb{R}$ を A 上の関数とし, $f(A) = \{f(x) ; x \in A\} \subseteq \mathbb{R}$ とおく.

- (1) f が A で**上に有界**であるとは, f(A) が上に有界であることを言う.
- (2) f が A で**下に有界**であるとは, f(A) が下に有界であることを言う.
- (3) f が A で**有界**であるとは, f(A) が有界であることを言う.

- 定義 2.1.5(3) の論理式 –

$$\exists c, d \in \mathbb{R}, \ c \leq d, \ \forall x \in A, \ c \leq f(x) \leq d.$$

定義 2.1.6. $A \neq \emptyset$ を集合, $f: A \rightarrow \mathbb{R}$ を A 上の関数とする.

- (1) f が A で上に有界のとき, $\sup_{x \in A} f(x) = \sup f(A)$ を f の A での上限と言う.
- (2) f が A で下に有界のとき, $\inf_{x \in A} f(x) = \inf f(A)$ を f の A での下限と言う.

注意. A ≠ ∅ を集合, f : A → ℝ を A 上の関数とする.

- (1) (上限公理) f が A で上に有界ならば, $\sup_{x \in A} f(x)$ が存在する.
- (2) (下限公理) f が A で下に有界ならば, $\inf_{x \in A} f(x)$ が存在する.

命題 2.1.2. $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A$, $f: A \setminus \{a\} \to \mathbb{R}$ を $A \setminus \{a\}$ 上の関数とする. $x \to a$ のとき,

- (1) f(x) が収束すれば、ある $\delta > 0$ が存在し、f は $B_{\delta}(a)$ で有界である.
- (2) f(x) が収束し、かつ $\lim_{x\to a} f(x) \neq 0$ ならば、ある $\delta > 0$ が存在し、任意の $x \in B_{\delta}(a)$ に対して

$$|f(x)| > \frac{1}{2} \left| \lim_{x \to a} f(x) \right|$$

が成り立つ.

証明. 省略 (微分積分学 I).

命題 2.1.3 (和・スカラー倍の極限). $d \in \{1,2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A, f,g: A \setminus \{a\} \to \mathbb{R}$ を $A \setminus \{a\}$ 上の関数, $c \in \mathbb{R}$ とする.

(1) $x \to a$ のとき, f(x), g(x) が収束すれば, f(x) + g(x) は収束し,

$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

が成り立つ.

(2) $x \to a$ のとき, f(x) が収束すれば, cf(x) は収束し,

$$\lim_{x \to a} (cf(x)) = c \lim_{x \to a} f(x)$$

が成り立つ.

証明. 省略(微分積分学I).

命題 2.1.4 (積・商の極限). $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A$, $f,g: A \setminus \{a\} \to \mathbb{R}$ を $A \setminus \{a\}$ 上の関数とする.

(1) $x \to a$ のとき, f(x), g(x) が収束すれば, f(x)g(x) は収束し,

$$\lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

が成り立つ.

(2) $x \to a$ のとき, f(x), g(x) が収束し、かつ $\lim_{x \to a} g(x) \neq 0$ ならば、 $\frac{f(x)}{g(x)}$ は収束し、

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

が成り立つ.

証明. 省略 (微分積分学 I).

命題 2.1.5 (極限の単調性). $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A$, $f,g: A \setminus \{a\} \to \mathbb{R}$ を $A \setminus \{a\}$ 上の関数とする. 任意の $x \in A$, $x \neq a$ に対して $f(x) \leq g(x)$, かつ $x \to a$ のとき, f(x), g(x) が収束すれば.

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$$

が成り立つ.

証明. 省略 (微分積分学 I).

命題 2.1.6 (はさみうちの原理). $d \in \{1,2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A, f, g, h : A \setminus \{a\} \to \mathbb{R}$ を $A \setminus \{a\}$ 上の関数とする. 任意の $x \in A, x \neq a$ に対して $f(x) \leq h(x) \leq g(x)$, かつ $x \to a$ のとき, f(x), g(x) が収束して $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$ ならば, $x \to a$ のとき, h(x) は収束し,

$$\lim_{x \to a} h(x) = \lim_{x \to a} f(x) = \lim_{x \to a} g(x)$$

が成り立つ.

証明. 省略(微分積分学 I).

命題 2.1.7. $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A$, $f: A \setminus \{a\} \to \mathbb{R}$ を $A \setminus \{a\}$ 上の関数, $\alpha \in \mathbb{R}$ とすると, 次の (i), (ii) は同値である.

- (i) $\lim_{x \to a} f(x) = \alpha$.
- (ii) 任意の $n\in\mathbb{N}$ に対して $x_n\neq a$, かつ $\lim_{n\to\infty}x_n=a$ となる A の任意の点列 $\{x_n\}_{n\in\mathbb{N}}$ に対して

$$\lim_{n \to \infty} f(x_n) = \alpha$$

となる.

証明. 省略 (微分積分学 I).

定理 2.1.1 (Cauchy の収束判定法). $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A$, $f: A \setminus \{a\} \to \mathbb{R}$ を $A \setminus \{a\}$ 上の関数とすると, 次の (i), (ii) は同値である.

- (i) $x \to a$ のとき, f(x) は収束する.
- (ii) 任意の $\varepsilon>0$ に対してある $\delta(\varepsilon)>0$ が存在し, $0<|x-a|,|y-a|<\delta(\varepsilon)$ を満たす任意の $x,y\in A$ に対して

$$|f(x) - f(y)| < \varepsilon$$

が成り立つ.

証明. 省略(微分積分学I).

● ベクトル値関数の極限

定義 2.1.7. A を集合とする. $f: A \to \mathbb{R}^2$ を $A \perp \mathcal{O}$ 関数または 2 次ベクトル値関数と言う.

定義 2.1.8 (ε - δ 論法). $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A$, $f: A \setminus \{a\} \to \mathbb{R}^2$ を $A \setminus \{a\}$ 上の 関数とする. $x \to a$ のとき, f(x) が $\alpha \in \mathbb{R}^2$ に収束するとは, 任意の $\varepsilon > 0$ に対してある $\delta(\varepsilon) > 0$ が存在 し, $0 < |x - a| < \delta(\varepsilon)$ を満たす任意の $x \in A$ に対して

$$|f(x) - \alpha| < \varepsilon$$

が成り立つことを言う. このとき, $\lim_{x\to a} f(x) = \alpha$ と書く.

定義 2.1.8 の論理式・

$$\forall \varepsilon > 0, \ \exists \delta(\varepsilon) > 0, \ \forall x \in A, \ (0 < |x - a| < \delta(\varepsilon) \Rightarrow |f(x) - \alpha| < \varepsilon).$$

定義 2.1.9 (M- δ 論法). $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A$, $f : A \setminus \{a\} \to \mathbb{R}^2$ を $A \setminus \{a\}$ 上の関数とする. $x \to a$ のとき, f(x) が ∞ に発散するとは, 任意の M > 0 に対してある $\delta(M) > 0$ が存在し, $0 < |x - a| < \delta(M)$ を満たす任意の $x \in A$ に対して

が成り立つことを言う. このとき, $\lim_{x\to a} f(x) = \infty$ と書く.

- 定義 2.1.9 の論理式 -

$$\forall M > 0, \ \exists \delta(M) > 0, \ \forall x \in A, \ (0 < |x - a| < \delta(M) \Rightarrow |f(x)| > M).$$

命題 2.1.8. $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A$, $f: A \setminus \{a\} \to \mathbb{R}^2$ を $A \setminus \{a\}$ 上の関数とする. $x \to a$ のとき, f(x) が収束すれば, $\lim_{x \to a} f(x)$ は一意である.

証明. 省略 (微分積分学 I).

例. $a \in \mathbb{R}^2$, $e \in \mathbb{R}^2 \setminus \{0\}$ とし, \mathbb{R} 上の関数 $x : \mathbb{R} \to \mathbb{R}^2$ を

$$x(t) = a + te \quad (t \in \mathbb{R})$$

によって定義すると, $\lim_{t\to 0} x(t) = a$ となる.

証明. 省略 (講義の自筆ノート).

例. \mathbb{R} 上の関数 $x: \mathbb{R} \setminus \{0\} \to \mathbb{R}^2$ を

$$x(t) = \left(t\cos\frac{1}{t}, t\sin\frac{1}{t}\right) \quad (t \in \mathbb{R}, \ t \neq 0)$$

によって定義すると, $\lim_{t\to 0} x(t) = (0,0)$ となる.

証明. 省略 (講義の自筆ノート).

定義 2.1.10. A を集合, $f: A \to \mathbb{R}^2$ を A 上の関数とし, $f(A) = \{f(x) \; ; \; x \in A\} \subseteq \mathbb{R}^2$ とおく. f が A で有界であるとは,

$$f(A) \subseteq \overline{B_M(0)}$$

を満たす $M \ge 0$ が存在することを言う.

定義 2.1.10 の論理式 -

$$\exists M \ge 0, \ \forall x \in A, \ |f(x)| \le M.$$

命題 2.1.9. $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A$, $f: A \setminus \{a\} \to \mathbb{R}^2$ を $A \setminus \{a\}$ 上の関数とする. $x \to a$ のとき,

- (1) f(x) が収束すれば、ある $\delta > 0$ が存在し、f は $B_{\delta}(a)$ で有界である.
- (2) f(x) が収束し、かつ $\lim_{x\to a} f(x) \neq 0$ ならば、ある $\delta > 0$ が存在し、任意の $x \in B_{\delta}(a)$ に対して

$$|f(x)| > \frac{1}{2} \left| \lim_{x \to a} f(x) \right|$$

が成り立つ.

証明. 省略 (微分積分学 I).

命題 2.1.10 (和・スカラー倍の極限). $d \in \{1,2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A, f, g : A \setminus \{a\} \to \mathbb{R}^2$ を $A \setminus \{a\}$ 上の関数, $c \in \mathbb{R}$ とする.

(1) $x \to a$ のとき, f(x), g(x) が収束すれば, f(x) + g(x) は収束し,

$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

が成り立つ.

(2) $x \to a$ のとき, f(x) が収束すれば, cf(x) は収束し,

$$\lim_{x \to a} (cf(x)) = c \lim_{x \to a} f(x)$$

が成り立つ.

証明. 省略 (微分積分学 I).

命題 2.1.11 (合成の極限). $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$, $B \subseteq \mathbb{R}^2$ をそれぞれ \mathbb{R}^d , \mathbb{R}^2 の部分集合, $a \in A$, $f: A \setminus \{a\} \to B$, $g: B \to \mathbb{R}$ をそれぞれ $A \setminus \{a\}$, $B \perp O$ 関数とするとき,

$$\lim_{x \to a} f(x) = b$$

となる $b \in B$ が存在し、かつ $y \to b$ のとき、g(y) が収束すれば、 $x \to a$ のとき、 $g \circ f$ は収束し、

$$\lim_{x \to a} (g \circ f)(x) = \lim_{y \to b} g(y)$$

が成り立つ.

証明. 省略 (微分積分学 I).

命題 2.1.12. $d \in \{1,2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A$, $f: A \setminus \{a\} \to \mathbb{R}^2$ を $A \setminus \{a\}$ 上の関数, $\alpha \in \mathbb{R}^2$ とすると, 次の (i), (ii) は同値である.

- (i) $\lim_{x \to a} f(x) = \alpha$.
- (ii) 任意の $n\in\mathbb{N}$ に対して $x_n\neq a$, かつ $\lim_{n\to\infty}x_n=a$ となる A の任意の点列 $\{x_n\}_{n\in\mathbb{N}}$ に対して

$$\lim_{n \to \infty} f(x_n) = \alpha$$

となる.

証明. 省略 (微分積分学 I).

定理 2.1.2 (Cauchy の収束判定法). $d \in \{1,2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A$, $f : A \setminus \{a\} \to \mathbb{R}^2$ を $A \setminus \{a\}$ 上の関数とすると, 次の (i), (ii) は同値である.

- (i) $x \to a$ のとき, f(x) は収束する.
- (ii) 任意の $\varepsilon>0$ に対してある $\delta(\varepsilon)>0$ が存在し, $0<|x-a|,|y-a|<\delta(\varepsilon)$ を満たす任意の $x,y\in A$ に対して

$$|f(x) - f(y)| < \varepsilon$$

が成り立つ.

証明. 省略 (微分積分学 I).

命題 2.1.13. $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A$, $f = (f_1, f_2) : A \setminus \{a\} \to \mathbb{R}^2$ を $A \setminus \{a\}$ 上の 関数とすると, 次の (i), (ii) は同値である.

- (i) $x \to a$ のとき, f(x) は \mathbb{R}^2 に収束する.
- (ii) $x \to a$ のとき, $f_1(x)$, $f_2(x)$ は \mathbb{R} に収束する.

さらに, f が (i) または (ii) を満たせば,

$$\lim_{x \to a} f(x) = \left(\lim_{x \to a} f_1(x), \lim_{x \to a} f_2(x) \right)$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

注意. \mathbb{R}^2 には全順序が存在しないので、2 次ベクトル値関数に対する

- (1) 極限の単調性
- (2) はさみうちの原理

は、命題として存在しない.

2.2 連続関数, 一様連続関数, 半連続関数

● スカラー値連続関数

定義 2.2.1. $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $f:A \to \mathbb{R}$ を A 上の関数とする.

(1) f が $a \in A$ で連続であるとは、

$$\lim_{x \to a} f(x) = f(a)$$

となることを言う.

(2) f が A で連続であるとは, f が任意の $a \in A$ で連続であることを言う.

- 定義 2.2.1(2) の論理式 -

$$\forall a \in A, \ \forall \varepsilon > 0, \ \exists \delta(a, \varepsilon) > 0, \ \forall x \in A, \ (|x - a| < \delta(a, \varepsilon) \Rightarrow |f(x) - f(a)| < \varepsilon).$$

命題 2.2.1 (和・スカラー倍の連続性). $d\in\{1,2\},\,A\subseteq\mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a\in A,\,f,g:A\to\mathbb{R}$ を A 上の関数, $c\in\mathbb{R}$ とする.

(1) f, g が a で連続ならば, f + g は a で連続であり,

$$\lim_{x \to a} (f(x) + g(x)) = f(a) + g(a)$$

が成り立つ.

(2) f が a で連続ならば, cf は a で連続であり,

$$\lim_{x \to a} (cf(x)) = cf(a)$$

が成り立つ.

証明. 省略 (命題 2.1.3).

命題 2.2.2 (積・商の連続性). $d\in\{1,2\},\ A\subseteq\mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a\in A,\ f,g:A\to\mathbb{R}$ を A 上の関数とする.

(1) f, g が a で連続ならば, fg は a で連続であり,

$$\lim_{x \to a} (f(x)g(x)) = f(a)g(a)$$

が成り立つ.

(2) f, g が a で連続であり、かつ $g(a) \neq 0$ ならば、 $\frac{f}{g}$ は a で連続であり、

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f(a)}{g(a)}$$

が成り立つ.

証明. 省略 (命題 2.1.4).

命題 2.2.3. $d\in\{1,2\},$ $A\subseteq\mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a\in A,$ $f:A\to\mathbb{R}$ を A 上の関数とすると, 次の (i), (ii) は同値である.

- (i) f は a で連続である.
- (ii) $\lim_{n \to \infty} x_n = a$ となる A の任意の点列 $\{x_n\}_{n \in \mathbb{N}}$ に対して

$$\lim_{n \to \infty} f(x_n) = f(a)$$

となる.

証明. 省略 (命題 2.1.7).

● ベクトル値連続関数

定義 2.2.2. $d \in \{1,2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $f: A \to \mathbb{R}^2$ を A 上の関数とする.

(1) f が $a \in A$ で連続であるとは、

$$\lim_{x \to a} f(x) = f(a)$$

となることを言う.

(2) f が A で連続であるとは, f が任意の $a \in A$ で連続であることを言う.

定義 2.2.2(2) の論理式 -

$$\forall a \in A, \ \forall \varepsilon > 0, \ \exists \delta(a, \varepsilon) > 0, \ \forall x \in A, \ (|x - a| < \delta(a, \varepsilon) \Rightarrow |f(x) - f(a)| < \varepsilon).$$

命題 2.2.4 (和・スカラー倍の連続性). $d \in \{1,2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A, f,g: A \to \mathbb{R}^2$ を A 上の関数, $c \in \mathbb{R}$ とする.

(1) f, g が a で連続ならば, f + g は a で連続であり,

$$\lim_{x \to a} (f(x) + g(x)) = f(a) + g(a)$$

が成り立つ.

(2) f が a で連続ならば, cf は a で連続であり,

$$\lim_{x \to a} (cf(x)) = cf(a)$$

が成り立つ.

証明. 省略 (命題 2.1.10).

命題 2.2.5 (合成の連続性). $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$, $B \subseteq \mathbb{R}^2$ をそれぞれ \mathbb{R}^d , \mathbb{R}^2 の部分集合, $a \in A$, $f:A \to B$, $g:B \to \mathbb{R}$ をそれぞれ A, B 上の関数とするとき, f, g がそれぞれ a, f(a) で連続ならば, $g \circ f$ は a で連続であり,

$$\lim_{x \to a} (g \circ f)(x) = g(f(a))$$

が成り立つ.

証明. 省略(命題2.1.11).

命題 2.2.6. $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A$, $f:A \to \mathbb{R}^2$ を A 上の関数とすると, 次の (i), (ii) は同値である.

- (i) f は a で連続である.
- (ii) $\lim_{n\to\infty}x_n=a$ となる A の任意の点列 $\{x_n\}_{n\in\mathbb{N}}$ に対して

$$\lim_{n \to \infty} f(x_n) = f(a)$$

となる.

証明. 省略 (命題 2.1.12).

命題 2.2.7. $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A$, $f = (f_1,f_2): A \to \mathbb{R}^2$ を A 上の関数とすると, 次の (i), (ii) は同値である.

- (i) f は a で連続である.
- (ii) f_1, f_2 は a で連続である.

証明. 省略 (命題 2.1.13).

• スカラー値一様連続関数

定義 2.2.3 (ε - δ 論法). $d \in \{1,2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $f:A \to \mathbb{R}$ を A 上の関数とする. f が A で一様連続であるとは, 任意の $\varepsilon > 0$ に対してある $\delta(\varepsilon) > 0$ が存在し, $|x-y| < \delta(\varepsilon)$ を満たす任意の $x,y \in A$ に対して

$$|f(x) - f(y)| < \varepsilon$$

が成り立つことを言う.

- 定義 2.2.3 の論理式 -

$$\forall \varepsilon > 0, \ \exists \delta(\varepsilon) > 0, \ \forall x, y \in A, \ (|x - y| < \delta(\varepsilon) \Rightarrow |f(x) - f(y)| < \varepsilon).$$

命題 2.2.8. $d\in\{1,2\},\,A\subseteq\mathbb{R}^d$ を \mathbb{R}^d の部分集合, $f:A\to\mathbb{R}$ を A 上の関数とするとき, f が A で一様連続ならば, f は A で連続である.

証明. 省略 (微分積分学 I).

定理 2.2.1 (Heine-Cantor の定理). $d \in \{1,2\}, K \subseteq \mathbb{R}^d$ を \mathbb{R}^d のコンパクト集合, $f:K \to \mathbb{R}$ を K 上の 関数とするとき, f が K で連続ならば, f は K で一様連続である.

証明. 省略 (講義の自筆ノート).

• ベクトル値一様連続関数

定義 2.2.4 $(\varepsilon$ - δ 論法). $d \in \{1,2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $f:A \to \mathbb{R}^2$ を A 上の関数とする. f が A で一様連続であるとは, 任意の $\varepsilon > 0$ に対してある $\delta(\varepsilon) > 0$ が存在し, $|x-y| < \delta(\varepsilon)$ を満たす任意の $x,y \in A$ に対して

$$|f(x) - f(y)| < \varepsilon$$

が成り立つことを言う.

- 定義 2.2.4 の論理式 -

$$\forall \varepsilon > 0, \ \exists \delta(\varepsilon) > 0, \ \forall x, y \in A, \ (|x - y| < \delta(\varepsilon) \Rightarrow |f(x) - f(y)| < \varepsilon).$$

命題 2.2.9. $d \in \{1,2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $f:A \to \mathbb{R}^2$ を A 上の関数とするとき, f が A で一様連続ならば, f は A で連続である.

証明. 省略 (微分積分学 I).

定理 2.2.2 (Heine-Cantor の定理). $d \in \{1,2\}, K \subseteq \mathbb{R}^d$ を \mathbb{R}^d のコンパクト集合, $f:K \to \mathbb{R}^2$ を $K \perp$ の関数とするとき, f が K で連続ならば, f は K で一様連続である.

証明. 省略 (定理 2.2.1).

● 半連続関数

定義 2.2.5 (ε - δ 論法). $d \in \{1,2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $f:A \to \mathbb{R}$ を A 上の関数とする.

(1) f が $a \in A$ で**上半連続**であるとは、任意の $\varepsilon > 0$ に対してある $\delta(\varepsilon) > 0$ が存在し、 $|x-a| < \delta(\varepsilon)$ を満たす任意の $x \in A$ に対して

$$f(x) - f(a) < \varepsilon$$

が成り立つことを言う.

(2) f が A で**上半連続**であるとは, f が任意の $a \in A$ で上半連続であることを言う.

- 定義 2.2.5(2) の論理式 -

$$\forall a \in A, \ \forall \varepsilon > 0, \ \exists \delta(a, \varepsilon) > 0, \ \forall x \in A, \ (|x - a| < \delta(a, \varepsilon) \Rightarrow f(x) - f(a) < \varepsilon).$$

定義 2.2.6 (ε - δ 論法). $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $f:A \to \mathbb{R}$ を A 上の関数とする.

(1) f が $a \in A$ で**下半連続**であるとは、任意の $\varepsilon > 0$ に対してある $\delta(\varepsilon) > 0$ が存在し、 $|x-a| < \delta(\varepsilon)$ を満たす任意の $x \in A$ に対して

$$f(x) - f(a) > -\varepsilon$$

が成り立つことを言う.

(2) f が A で下半連続であるとは, f が任意の $a \in A$ で下半連続であることを言う.

- 定義 2.2.6(2) の論理式 🗕

$$\forall a \in A, \ \forall \varepsilon > 0, \ \exists \delta(a, \varepsilon) > 0, \ \forall x \in A, \ (|x - a| < \delta(a, \varepsilon) \Rightarrow f(x) - f(a) > -\varepsilon).$$

命題 2.2.10. $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $a \in A$, $f:A \to \mathbb{R}$ を A 上の関数とすると, 次の (i), (ii) は同値である.

- (i) *f* は *a* で連続である.
- (ii) f は a で上半連続かつ下半連続である.

証明. 省略(微分積分学I).

• 最大値の定理

定義 2.2.7. $A \neq \emptyset$ を集合, $f: A \to \mathbb{R}$ を $A \perp \emptyset$ 関数とし, $f(A) = \{f(x) ; x \in A\} \subseteq \mathbb{R}$ とおく.

- (1) $\max f(A)$ が存在するとき, $\max_{x \in A} f(x) = \max f(A)$ を f の A での最大値と言う.
- (2) $\min f(A)$ が存在するとき, $\min_{x \in A} f(x) = \min f(A)$ を f の A での最小値と言う.

定義 2.2.8. A を集合, $f: A \to \mathbb{R}$ を A 上の関数とする.

(1) f が $x_0 \in A$ で最大であるとは、

$$f(x_0) = \max_{x \in A} f(x)$$

が成り立つことを言う.

(2) f が $x_0 \in A$ で最小であるとは、

$$f(x_0) = \min_{x \in A} f(x)$$

が成り立つことを言う.

補題 2.2.1 (有界性の定理). $d \in \{1,2\}, K \subseteq \mathbb{R}^d$ を \mathbb{R}^d のコンパクト集合, $f:K \to \mathbb{R}$ を K 上の関数とする.

- (1) f が K で上半連続ならば, f は K で上に有界である.
- (2) f が K で下半連続ならば, f は K で下に有界である.

証明. 省略 (講義の自筆ノート).

定理 2.2.3 (最大値の定理). $d \in \{1,2\}, K \subseteq \mathbb{R}^d$ を \mathbb{R}^d のコンパクト集合, $f: K \to \mathbb{R}$ を K 上の関数とする.

- (1) f が K で上半連続ならば, f の K での最大値が存在する.
- (2) f が K で下半連続ならば, f の K での最小値が存在する.

証明. 省略 (講義の自筆ノート).

定理 2.2.4. $d \in \{1,2\}, K \subseteq \mathbb{R}^d$ を \mathbb{R}^d のコンパクト集合, $f:K \to \mathbb{R}$ を K 上の関数とするとき, f が K で連続ならば, f の K での最大値・最小値が存在し,

$$c = \min_{x \in K} f(x), \quad d = \max_{x \in K} f(x)$$

とおくと, $f(K) \subset [c,d]$ は \mathbb{R} のコンパクト集合である.

証明. 省略 (講義の自筆ノート).

2.3 全導関数と接平面

• 正方行列空間

定義 2.3.1. $a_{ij} \in \mathbb{R} ((i,j) \in \{1,2\}^2)$ を

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

のように並べたものを2次正方行列と言う.また,2次正方行列全体の集合を

$$M_2(\mathbb{R}) = \left\{ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \; ; \; a_{ij} \in \mathbb{R} \; ((i,j) \in \{1,2\}^2) \right\}$$

と書く.

定義 2.3.2. 2 次正方行列の相等・加法・スカラー乗法を

(1) (相等) $\forall A, B \in M_2(\mathbb{R}), (A = B \Leftrightarrow \forall (i, j) \in \{1, 2\}^2, a_{ij} = b_{ij}).$

(2) (加法)
$$A + B = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{pmatrix} (A, B \in M_2(\mathbb{R})).$$

(3) (スカラー乗法)
$$cA = \begin{pmatrix} ca_{11} & ca_{12} \\ ca_{21} & ca_{22} \end{pmatrix}$$
 $(c \in \mathbb{R}, A \in M_2(\mathbb{R})).$

によって定義する.

命題 2.3.1. $M_2(\mathbb{R})$ は 2 次正方行列の加法・スカラー乗法について線型空間である. つまり, 次の (i)–(viii) を満たす.

(i)
$$(A+B)+C=A+(B+C)$$
 $(A,B,C\in M_2(\mathbb{R})).$

(ii)
$$\exists ! O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in M_2(\mathbb{R}), \, \forall A \in M_2(\mathbb{R}), \, A + O = A = O + A.$$

(iii)
$$\forall A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_2(\mathbb{R}), \ \exists ! - A = \begin{pmatrix} -a_{11} & -a_{12} \\ -a_{21} & -a_{22} \end{pmatrix} \in M_2(\mathbb{R}), \ A + (-A) = O = (-A) + A.$$

(iv)
$$A + B = B + A \ (A, B \in M_2(\mathbb{R})).$$

(v)
$$(cd)A = c(dA)$$
 $(c, d \in \mathbb{R}, A \in M_2(\mathbb{R})).$

(vi)
$$1A = A \ (A \in M_2(\mathbb{R})).$$

(vii)
$$(c+d)A = cA + dA$$
 $(c, d \in \mathbb{R}, A \in M_2(\mathbb{R})).$

(viii)
$$c(A+B) = cA + cB \ (c \in \mathbb{R}, A, B \in M_2(\mathbb{R})).$$

証明. 省略(微分積分学I).

注意 (減法). (iii) の A + (-B) を A - B と書く.

● 正方行列空間上の内積・ノルム・距離

定義 2.3.3. 任意の $A, B \in M_2(\mathbb{R})$ に対し,

$$\langle A, B \rangle = \sum_{(i,j)=(1,1)}^{(2,2)} a_{ij} b_{ij}$$

を A と B の**内積**と言う.

命題 2.3.2. $(M_2(\mathbb{R}), \langle *, * \rangle)$ は内積空間である. つまり, 次の (i)-(iv) を満たす.

- (i) $\forall A \in M_2(\mathbb{R}), (\langle A, A \rangle \geq 0) \land (\langle A, A \rangle = 0 \Leftrightarrow A = O).$
- (ii) $\langle A, B \rangle = \langle B, A \rangle$ $(A, B \in M_2(\mathbb{R})).$
- (iii) $\langle A+B,C\rangle = \langle A,C\rangle + \langle B,C\rangle \ (A,B,C\in M_2(\mathbb{R})).$
- (iv) $\langle cA, B \rangle = c \langle A, B \rangle$ $(c \in \mathbb{R}, A, B \in M_2(\mathbb{R})).$

証明. 省略 (命題 1.1.2).

定義 2.3.4. 任意の $A \in M_2(\mathbb{R})$ に対し,

$$|A| = \sqrt{\langle A, A \rangle}$$

を A のノルムまたは絶対値と言う.

命題 2.3.3.

- (1) $|a_1| \leq |A|$ $(A = (a_1 \ a_2) \in M_2(\mathbb{R})).$
- (2) $|a_2| \le |A| \ (A = (a_1 \ a_2) \in M_2(\mathbb{R})).$
- (3) $|A| \le |a_1| + |a_2| \ (A = (a_1 \ a_2) \in M_2(\mathbb{R})).$

証明. 省略 (命題 1.1.3).

命題 2.3.4 (Schwarz の不等式). 任意の $A, B \in M_2(\mathbb{R})$ に対して

$$|\langle A, B \rangle| \le |A||B|$$

が成り立つ.

証明. 省略 (命題 1.1.4).

命題 2.3.5. $(M_2(\mathbb{R}), |*|)$ はノルム空間である. つまり, 次の (i)–(iii) を満たす.

- (i) $\forall A \in M_2(\mathbb{R}), (|A| \ge 0) \land (|A| = 0 \Leftrightarrow A = 0).$
- (ii) (三角不等式) $|A + B| \le |A| + |B|$ $(A, B \in M_2(\mathbb{R}))$.
- (iii) |cA| = |c||A| $(c \in \mathbb{R}, A \in M_2(\mathbb{R})).$

証明. 省略(命題1.1.5).

命題 2.3.6. 任意の $A, B \in M_2(\mathbb{R}) \setminus \{O\}$ に対し,

$$\langle A, B \rangle = |A||B|\cos\theta$$

を満たす $0 \le \theta \le \pi$ が一意に存在する.

証明. 省略 (命題 1.1.6).

定義 2.3.5. 任意の $A, B \in M_2(\mathbb{R}) \setminus \{O\}$ に対し、命題 2.3.6 の $0 \le \theta \le \pi$ を A と B のなす角の弧度と言う.

定義 2.3.6. 任意の $A, B \in M_2(\mathbb{R})$ に対し,

$$d(A,B) = |A - B|$$

をAとBの距離と言う.

命題 2.3.7. $(M_2(\mathbb{R}), d)$ は距離空間である. つまり, 次の (i)–(iii) を満たす.

- (i) $\forall A, B \in M_2(\mathbb{R}), (d(A, B) \ge 0) \land (d(A, B) = 0 \Leftrightarrow A = B).$
- (ii) (三角不等式) $d(A, C) \le d(A, B) + d(B, C)$ ($A, B, C \in M_2(\mathbb{R})$).
- (iii) $d(A, B) = d(B, A) \ (A, B \in M_2(\mathbb{R})).$

証明. 省略 (命題 1.1.7).

● スカラー値関数の方向導関数・偏導関数

定義 2.3.7. $e \in \mathbb{R}^2 \setminus \{0\}$, $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}$ を U 上の関数とする.

(1) f が $a \in U$ で e 方向に微分可能であるとは、

$$\lim_{h \to 0} \frac{f(a+he) - f(a)}{h} = \alpha$$

となる $\alpha \in \mathbb{R}$ が存在することを言う.このとき, $\alpha = \frac{\partial f}{\partial e}(a)$ と書き, $\frac{\partial f}{\partial e}(a)$ を f の a での e 方向 の微分係数と言う.

(2) f が U で e 方向に微分可能</mark>であるとは, f が任意の $a \in U$ で e 方向に微分可能であることを言う. このとき, $\frac{\partial f}{\partial e}: U \to \mathbb{R}$ を f の e 方向の導関数と言う.

例. $e = (a, b) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ とし、 \mathbb{R}^2 上の関数 $f : \mathbb{R}^2 \to \mathbb{R}$ を

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & ((x,y) \neq (0,0)), \\ 0 & ((x,y) = (0,0)) \end{cases}$$

によって定義すると, ab=0 ならば, f は (0,0) で e 方向に微分可能であり, $\frac{\partial f}{\partial e}(0,0)=0$ が成り立つ. 証明. 省略 (講義の自筆ノート).

定義 2.3.8. $\{e_1,e_2\}\subseteq\mathbb{R}^2$ を \mathbb{R}^2 の標準基底, $i\in\{1,2\}$, $U\subseteq\mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f:U\to\mathbb{R}$ を U 上の関数とする.

(1) f が $a \in U$ で x_i について偏微分可能であるとは、

$$\lim_{h \to 0} \frac{f(a + he_i) - f(a)}{h} = \alpha$$

となる $\alpha \in \mathbb{R}$ が存在することを言う.このとき, $\alpha = \frac{\partial f}{\partial x_i}(a)$ と書き, $\frac{\partial f}{\partial x_i}(a)$ を f の a での x_i についての偏微分係数と言う.

- (2) f が U で x_i について**偏微分可能**であるとは, f が任意の $a \in U$ で x_i について偏微分可能であることを言う. このとき, $\frac{\partial f}{\partial x_i}: U \to \mathbb{R}$ を f の x_i についての**偏導関数**と言う.
- 例. $U = \{(x,y) \in \mathbb{R}^2 ; 3x + y^2 \neq 0\}$ とおき, U 上の関数 $f: U \to \mathbb{R}$ を

$$f(x,y) = \frac{x^2y}{3x + y^2}$$
 $((x,y) \in U)$

によって定義すると, f は U で x, y について偏微分可能であり

$$\frac{\partial f}{\partial x}(x,y) = \frac{3x^2y + 2xy^3}{(3x + y^2)^2}, \quad \frac{\partial f}{\partial y}(x,y) = \frac{3x^3 - x^2y^2}{(3x + y^2)^2} \quad ((x,y) \in U)$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 2.3.9. $U\subseteq\mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f:U\to\mathbb{R}$ を U 上の任意の $i\in\{1,2\}$ に対する x_i について偏微分可能な関数とする.

$$\operatorname{grad} f(x) = \left(\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x)\right) \quad (x \in U)$$

によって定義される $\operatorname{grad} f: U \to \mathbb{R}^2$ を f の**勾配** (gradient) と言う.

● ベクトル値関数の方向導関数・偏導関数

定義 2.3.10. $e \in \mathbb{R}^2 \setminus \{0\}$, $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}^2$ を U 上の関数とする.

(1) f が $a \in U$ で e 方向に微分可能</mark>であるとは、

$$\lim_{h \to 0} \frac{f(a+he) - f(a)}{h} = \alpha$$

となる $\alpha \in \mathbb{R}^2$ が存在することを言う.このとき, $\alpha = \frac{\partial f}{\partial e}(a)$ と書き, $\frac{\partial f}{\partial e}(a)$ を f の a での e 方向 の微分係数と言う.

(2) f が U で e 方向に微分可能</mark>であるとは, f が任意の $a \in U$ で e 方向に微分可能であることを言う. このとき, $\frac{\partial f}{\partial e}: U \to \mathbb{R}^2$ を f の e 方向の導関数と言う.

命題 2.3.8. $e \in \mathbb{R}^2 \setminus \{0\}$, $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $a \in U$, $f = (f_1, f_2) : U \to \mathbb{R}^2$ を U 上の関数とすると, 次の (i), (ii) は同値である.

- (i) f は a で e 方向に微分可能である.
- (ii) f_1 , f_2 は a で e 方向に微分可能である.

さらに、fが(i) または(ii) を満たせば、

$$\frac{\partial f}{\partial e}(a) = \begin{pmatrix} \frac{\partial f_1}{\partial e}(a) \\ \frac{\partial f_2}{\partial e}(a) \end{pmatrix}$$

が成り立つ.

証明. 省略(講義の自筆ノート).

定義 2.3.11. $\{e_1, e_2\} \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の標準基底, $i \in \{1, 2\}$, $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}^2$ を U 上の関数とする.

(1) f が $a \in U$ で x_i について偏微分可能であるとは、

$$\lim_{h \to 0} \frac{f(a + he_i) - f(a)}{h} = \alpha$$

となる $\alpha \in \mathbb{R}^2$ が存在することを言う.このとき, $\alpha = \frac{\partial f}{\partial x_i}(a)$ と書き, $\frac{\partial f}{\partial x_i}(a)$ を f の a での x_i に ついての偏微分係数と言う.

(2) f が U で x_i について**偏微分可能**であるとは, f が任意の $a \in U$ で x_i について偏微分可能であることを言う. このとき, $\frac{\partial f}{\partial x_i}: U \to \mathbb{R}^2$ を f の x_i についての**偏導関数**と言う.

定義 2.3.12. $U\subseteq\mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f:U\to\mathbb{R}^2$ を U 上の任意の $i\in\{1,2\}$ に対する x_i について偏微分可能な関数とする.

$$J_f(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_1}{\partial x_2}(x) \\ \frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) \end{pmatrix} \quad (x \in U)$$

によって定義される $J_f: U \to M_2(\mathbb{R})$ を f の Jacobi 行列と言う.

• スカラー値関数の全導関数

定義 2.3.13. $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}$ を U 上の関数とする.

(1) f が $a \in U$ で全微分可能であるとは、

$$\lim_{x \to a} \frac{f(x) - f(a) - \langle \alpha, x - a \rangle}{|x - a|} = 0$$

となる $\alpha \in \mathbb{R}^2$ が存在することを言う. このとき, $\alpha = f'(a)$ と書き, f'(a) を f の a での全微分係数と言う.

(2) f が U で全微分可能であるとは, f が任意の $a \in U$ で全微分可能であることを言う. このとき, $f': U \to \mathbb{R}^2$ を f の全導関数と言う.

例. $(a,b) \in \mathbb{R}^2$ とし、 \mathbb{R}^2 上の関数 $f: \mathbb{R}^2 \to \mathbb{R}$ を

$$f(x,y) = \langle (a,b), (x,y) \rangle \quad ((x,y) \in \mathbb{R}^2)$$

によって定義すると, f は \mathbb{R}^2 で全微分可能であり, f'(x,y) = (a,b) $((x,y) \in \mathbb{R}^2)$ が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 2.3.9. $U\subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $a\in U, f:U\to \mathbb{R}$ を U 上の関数とするとき, f が a で全微分可能 ならば, f は a で連続である.

証明. 省略 (講義の自筆ノート).

命題 2.3.10. $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $a \in U$, $f: U \to \mathbb{R}$ を U 上の関数とするとき, f が a で全微分可能ならば, 任意の $e \in \mathbb{R}^2 \setminus \{0\}$ に対して f は a で e 方向に微分可能であり,

$$\frac{\partial f}{\partial e}(a) = \langle f'(a), e \rangle$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 2.3.11. $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $a \in U$, $f: U \to \mathbb{R}$ を U 上の関数とするとき, f が a で全微分可能ならば, 任意の $i \in \{1,2\}$ に対して f は a で x_i について偏微分可能であり,

$$f'(a) = \operatorname{grad} f(a)$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 2.3.12. $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}$ を U 上の関数とするとき, 任意の $i \in \{1,2\}$ に対して f が U で x_i について偏微分可能であり, かつ $\frac{\partial f}{\partial x_i}$ が U で連続ならば, f は U で全微分可能である.

証明. 省略 (講義の自筆ノート).

命題 2.3.13 (和・スカラー倍の全微分可能性). $U\subseteq\mathbb{R}^2$ を \mathbb{R}^2 の開集合, $a\in U,\,f,g:U\to\mathbb{R}$ を U 上の 関数, $c\in\mathbb{R}$ とする.

(1) f, g が a で全微分可能ならば, f + g は a で全微分可能であり,

$$(f+g)'(a) = f'(a) + g'(a)$$

が成り立つ.

(2) f が a で全微分可能ならば, cf は a で全微分可能であり,

$$(cf)'(a) = cf'(a)$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 2.3.14 (積・商の全微分可能性). $U\subseteq\mathbb{R}^2$ を \mathbb{R}^2 の開集合, $a\in U,\,f,g:U\to\mathbb{R}$ を U 上の関数とする.

(1) f, g が a で全微分可能ならば, fg は a で全微分可能であり,

$$(fg)'(a) = f'(a)g(a) + f(a)g'(a)$$

が成り立つ.

(2) f, g が a で全微分可能であり、かつ $g(a) \neq 0$ ならば、 $\frac{f}{g}$ は a で全微分可能であり、

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2}$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

• ベクトル値関数の全導関数

定義 2.3.14. $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}^2$ を U 上の関数とする.

(1) f が $a \in U$ で全微分可能であるとは、

$$\lim_{x \to a} \frac{f(x) - f(a) - A(x - a)}{|x - a|} = 0$$

となる $A \in M_2(\mathbb{R})$ が存在することを言う. このとき, A = f'(a) と書き, f'(a) を f の a での全微 分係数と言う.

(2) f が U で全微分可能であるとは, f が任意の $a \in U$ で全微分可能であることを言う. このとき, $f': U \to M_2(\mathbb{R})$ を f の全導関数と言う.

例. $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R})$ とし、 \mathbb{R}^2 上の関数 $f: \mathbb{R}^2 \to \mathbb{R}$ を

$$f(x,y) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \quad ((x,y) \in \mathbb{R}^2)$$

によって定義すると, f は \mathbb{R}^2 で全微分可能であり, $f'(x,y) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $((x,y) \in \mathbb{R}^2)$ が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 2.3.15. $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $a \in U$, $f: U \to \mathbb{R}^2$ を U 上の関数とするとき, f が a で全微分可能ならば, f は a で連続である.

П

証明. 省略 (命題 2.3.9).

命題 2.3.16. $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $a \in U$, $f: U \to \mathbb{R}^2$ を U 上の関数とするとき, f が a で全微分可能ならば, 任意の $e \in \mathbb{R}^2 \setminus \{0\}$ に対して f は a で e 方向に微分可能であり,

$$\frac{\partial f}{\partial e}(a) = f'(a)e$$

が成り立つ.

証明. 省略 (命題 2.3.10).

命題 2.3.17. $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $a \in U$, $f: U \to \mathbb{R}^2$ を U 上の関数とするとき, f が a で全微分可能ならば, 任意の $i \in \{1,2\}$ に対して f は a で x_i について偏微分可能であり,

$$f'(a) = J_f(a)$$

が成り立つ.

証明. 省略(命題 2.3.11).

命題 2.3.18. $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}^2$ を U 上の関数とするとき, 任意の $i \in \{1,2\}$ に対して f が U で x_i について偏微分可能であり, かつ $\frac{\partial f}{\partial x_i}$ が U で連続ならば, f は U で全微分可能である.

証明. 省略(命題 2.3.12).

命題 2.3.19 (和・スカラー倍の全微分可能性). $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $a \in U$, $f,g:U \to \mathbb{R}^2$ を U 上の関数, $c \in \mathbb{R}$ とする.

(1) f, g が a で全微分可能ならば, f + g は a で全微分可能であり,

$$(f+g)'(a) = f'(a) + g'(a)$$

が成り立つ.

(2) f が a で全微分可能ならば, cf は a で全微分可能であり,

$$(cf)'(a) = cf'(a)$$

が成り立つ.

証明. 省略 (命題 2.3.13).

命題 2.3.20 (合成の全微分可能性). $U,V\subseteq\mathbb{R}^2$ を \mathbb{R}^2 の開集合, $a\in U,f:U\to V,g:V\to\mathbb{R}$ をそれ ぞれ U,V 上の関数とするとき, f,g がそれぞれ a,f(a) で全微分可能ならば, $g\circ f$ は a で全微分可能で あり,

$$(g \circ f)'(a) = g'(f(a))f'(a)$$

が成り立つ. さらに、

$$(g \circ f)'(a) = g'(f(a))f'(a)$$

の成分を書き下せば,

$$\frac{\partial (g \circ f)}{\partial x_i}(a) = \frac{\partial g}{\partial y_1}(f(a))\frac{\partial f_1}{\partial x_i}(a) + \frac{\partial g}{\partial y_2}(f(a))\frac{\partial f_2}{\partial x_i}(a) \quad (i \in \{1, 2\})$$

が成り立つ.

証明. 省略(講義の自筆ノート).

例 (極座標変換). $(0,\infty) \times \mathbb{R}$ 上の関数 $\varphi : (0,\infty) \times \mathbb{R} \to \mathbb{R}^2 \setminus \{(0,0)\}$ を

$$\varphi(r,\theta) = (r\cos\theta, r\sin\theta) \quad (r > 0, \ \theta \in \mathbb{R})$$

によって定義する. $f:\mathbb{R}^2\setminus\{(0,0)\}\to\mathbb{R}$ を $\mathbb{R}^2\setminus\{(0,0)\}$ 上の全微分可能関数とすると, $g=f\circ\varphi$ は $(0,\infty)\times\mathbb{R}$ (極座標) で全微分可能であり,

$$\frac{\partial g}{\partial r}(r,\theta) = \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial f}{\partial x}(x,y) + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial f}{\partial y}(x,y),$$

$$\frac{\partial g}{\partial \theta}(r,\theta) = -y \frac{\partial f}{\partial x}(x,y) + x \frac{\partial f}{\partial y}(x,y)$$

が成り立つ.

例 (極座標逆変換). $(0,\infty) \times \mathbb{R}$ 上の関数 $\psi:(0,\infty) \times \mathbb{R} \to (0,\infty) \times \left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ を

$$\psi(x,y) = \left(\sqrt{x^2 + y^2}, \arctan \frac{y}{x}\right) \quad (x > 0, \ y \in \mathbb{R})$$

によって定義する. $g:(0,\infty) imes\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to\mathbb{R}$ を $(0,\infty) imes\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ 上の全微分可能関数とすると, $f=g\circ\psi$ は $(0,\infty) imes\mathbb{R}$ (直交座標) で全微分可能であり,

$$\frac{\partial f}{\partial x}(x,y) = \cos\theta \frac{\partial g}{\partial r}(r,\theta) - \frac{\sin\theta}{r} \frac{\partial g}{\partial \theta}(r,\theta),$$

$$\frac{\partial f}{\partial y}(x,y) = \sin \theta \frac{\partial g}{\partial r}(r,\theta) + \frac{\cos \theta}{r} \frac{\partial g}{\partial \theta}(r,\theta)$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 2.3.21. $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $a \in U$, $f = (f_1, f_2) : U \to \mathbb{R}^2$ を U 上の関数とすると, 次の (i), (ii) は同値である.

- (i) f は a で全微分可能である.
- (ii) f_1 , f_2 は a で全微分可能である.

さらに、f が (i) または (ii) を満たせば、

$$f'(a) = \begin{pmatrix} f_1'(a) \\ f_2'(a) \end{pmatrix}$$

が成り立つ.

● 接平面

定義 2.3.15. $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の部分集合, $f: A \to \mathbb{R}$ を A 上の関数とする.

$$G(f) = \{(x, y) \in \mathbb{R}^2 \times \mathbb{R} \; ; \; x \in A, \; y = f(x) \}$$

を *f* の**グラフ**と言う.

命題 2.3.22. $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $a \in U$, $f: U \to \mathbb{R}$ を U 上の関数とすると, 次の (i), (ii) は同値である.

- (i) *f* は *a* で全微分可能である.
- (ii) $f(x) f(a) = \langle \alpha, x a \rangle + o(|x a|) (x \to a)$ を満たす $\alpha \in \mathbb{R}^2$ が存在する.

さらに, f が (i) または (ii) を満たせば, $f'(a) = \alpha$ が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 2.3.16. $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $a \in U$, $f: U \to \mathbb{R}$ を U 上の a で全微分可能な関数とする.

$$T_a(f) = \{(x, y) \in \mathbb{R}^2 \times \mathbb{R} ; y - f(a) = \langle f'(a), x - a \rangle \}$$

をG(f)の(a, f(a))での接平面と言う.

第3章 Taylorの定理, 陰関数定理

3.1 高階偏導関数

• 多重指数

定義 3.1.1. $\alpha_1, \alpha_2 \in \mathbb{N}$ を

$$\alpha = (\alpha_1, \alpha_2)$$

のように並べたものを**多重指数**と言う. また, 多重指数全体の集合を

$$\mathbb{N}^2 = \{ \alpha = (\alpha_1, \alpha_2) ; \alpha_1, \alpha_2 \in \mathbb{N} \}$$

と書く.

定義 3.1.2. 多重指数の相等・加法・スカラー乗法を

- (1) (相等) $\forall \alpha, \beta \in \mathbb{N}^2$, $(\alpha = \beta \Leftrightarrow (\alpha_1 = \beta_1) \land (\alpha_2 = \beta_2))$.
- (2) (加法) $\alpha + \beta = (\alpha_1 + \beta_1, \alpha_2 + \beta_2)$ $(\alpha, \beta \in \mathbb{N}^2)$.
- (3) (スカラー乗法) $m\alpha = (m\alpha_1, m\alpha_2)$ ($m \in \mathbb{N}, \alpha \in \mathbb{N}^2$).

によって定義する.

命題 3.1.1. \mathbb{N}^2 は多重指数の加法・スカラー乗法について次の (i)–(viii) を満たす.

- (i) $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) \ (\alpha, \beta, \gamma \in \mathbb{N}^2).$
- (ii) $\exists !0 = (0,0) \in \mathbb{N}^2, \forall \alpha \in \mathbb{N}^2, \alpha + 0 = 0 + \alpha = \alpha.$
- (iii) $\forall \alpha, \beta \in \mathbb{N}^2$, $((\alpha_1 \geq \beta_1) \land (\alpha_2 \geq \beta_2) \Rightarrow \alpha + (-\beta) = (\alpha_1 \beta_1, \alpha_2 \beta_2))$.
- (iv) $\alpha + \beta = \beta + \alpha \ (\alpha, \beta \in \mathbb{N}^2).$
- (v) $(mn)\alpha = m(n\alpha) \ (m, n \in \mathbb{N}, \ \alpha \in \mathbb{N}^2).$
- (vi) $(m+n)\alpha = m\alpha + n\alpha \ (m, n \in \mathbb{N}, \ \alpha \in \mathbb{N}^2).$
- (vii) $m(\alpha + \beta) = m\alpha + m\beta \ (m \in \mathbb{N}, \ \alpha, \beta \in \mathbb{N}^2).$
- (viii) $\exists ! 1 \in \mathbb{N} \setminus \{0\}, \forall \alpha \in \mathbb{N}^2, 1\alpha = \alpha.$

証明. 省略(命題1.1.1).

注意 (減法). (iii) の $\alpha + (-\beta)$ を $\alpha - \beta$ と書く.

定義 3.1.3. 多重指数の順序・長さ・階乗を

(1) (順序) $\forall \alpha, \beta \in \mathbb{N}^2$, $(\alpha \leq \beta \Leftrightarrow (\alpha_1 \leq \beta_1) \land (\alpha_2 \leq \beta_2))$.

(2) (長さ)
$$|\alpha| = \alpha_1 + \alpha_2 \ (\alpha \in \mathbb{N}^2)$$
.

(3) (階乗)
$$\alpha! = \alpha_1!\alpha_2!$$
 ($\alpha \in \mathbb{N}^2$).

によって定義する.

定義 3.1.4.

(1) 任意の $\alpha, \beta \in \mathbb{N}$ に対し,

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{cases} 1 & (\beta = 0), \\ \frac{\alpha(\alpha - 1)\cdots(\alpha - \beta + 1)}{\beta!} & (\beta \ge 1) \end{cases}$$

を**二項係数**と言う.

(2) 任意の $\alpha, \beta \in \mathbb{N}^2$ に対し,

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{cases} \begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix} \begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix} & (\alpha \ge \beta), \\ 0 & (\alpha \not\ge \beta) \end{cases}$$

を二項係数と言う.

• n 階偏導関数

定義 3.1.5. $d \in \{1,2\}$, $\{e_1,e_2\} \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の標準基底, $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f:U \to \mathbb{R}^d$ を U 上の関数とする. 任意の $n \in \mathbb{N}$, $n \geq 1$ に対し, 次の (i), (ii) によって帰納的に定義される $f^{(\alpha)}:U \to \mathbb{R}^d$ ($\alpha \in \mathbb{N}^2$, $|\alpha| = n$) を f の n 階偏導関数と言う.

- (i) $f^{(0)} = f$.
- (ii) $\forall \alpha \in \mathbb{N}^2$, $|\alpha| \leq n-1$, $\exists i \in \{1,2\}$, $(f^{(\alpha)}: U \to \mathbb{R})$ が U で x_i について偏微分可能ならば, $f^{(\alpha+e_i)}$ を

$$f^{(\alpha+e_i)} = \frac{\partial f^{(\alpha)}}{\partial x_i}$$

によって定義する).

例. $U = \{(x,y) \in \mathbb{R}^2 ; x^2 > y\}$ とおき, U 上の関数 $f: U \to \mathbb{R}$ を

$$f(x,y) = \log(x^2 - y) \quad ((x,y) \in U)$$

によって定義すると,

$$\begin{split} \frac{\partial^2 f}{\partial x^2}(x,y) &= -\frac{2(x^2+y)}{(x^2-y)^2} \quad ((x,y) \in U), \\ \frac{\partial^2 f}{\partial y \partial x}(x,y) &= \frac{2x}{(x^2-y)^2} = \frac{\partial^2 f}{\partial x \partial y}(x,y) \quad ((x,y) \in U), \\ \frac{\partial^2 f}{\partial y^2}(x,y) &= -\frac{1}{(x^2-y)^2} \quad ((x,y) \in U) \end{split}$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 3.1.6. $d \in \{1, 2\}, U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}^d$ を U 上の関数とする.

(1) f が U で n 回連続微分可能または C^n 級 $(n \in \mathbb{N})$ であるとは, 任意の $\alpha \in \mathbb{N}^2$, $|\alpha| \leq n$ に対して $f^{(\alpha)}$ が定義され, $f^{(\alpha)}$ が U で連続であることを言う.

(2) f が U で無限回微分可能または C^{∞} 級であるとは, 任意の $n \in \mathbb{N}$ に対して f が U で C^n 級であることを言う.

定義 3.1.7. 2 次ベクトルの冪・偏微分を

(1) (冪) $x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \ (x \in \mathbb{R}^2, \ \alpha \in \mathbb{N}^2).$

(2) (偏微分)
$$\frac{\partial^{\alpha}}{\partial x^{\alpha}} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2}} (x \in \mathbb{R}^2, \ \alpha \in \mathbb{N}^2).$$

によって定義する.

命題 3.1.2. $d \in \{1,2\}, n \in \mathbb{N}, n \geq 2, U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}^d$ を U 上の C^n 関数とすると, 任意の $\alpha \in \mathbb{N}^2$, $|\alpha| \leq n$ に対して $f^{(\alpha)}$ は $\frac{\partial}{\partial x_1}$, $\frac{\partial}{\partial x_2}$ の順序に依存せず定義される.

証明. 省略 (講義の自筆ノート).

注意. $d\in\{1,2\},\,U\subseteq\mathbb{R}^2$ を \mathbb{R}^2 の開集合, $n\in\mathbb{N},\,f:U\to\mathbb{R}^d$ を U 上の C^n 級関数とすると, 任意の $\alpha\in\mathbb{N}^2,\,|\alpha|\leq n$ に対して

$$f^{(\alpha)}(x) = \frac{\partial^{\alpha} f}{\partial x^{\alpha}}(x) \quad (x \in U)$$

が成り立つ.

命題 3.1.3 (二項定理). 任意の $n \in \mathbb{N}$ に対して

$$(x_1 + x_2)^n = \sum_{|\alpha| = n} \frac{n!}{\alpha!} x^{\alpha} \quad (x \in \mathbb{R}^2)$$

が成り立つ.

3.2 Taylor の定理と関数の極大・極小

● 多重指数と Taylor の定理

補題 3.2.1. $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $n \in \mathbb{N}$, $f : I \to \mathbb{R}$ を I 上の C^{n+1} 級関数とすると, 任意の $x \in I$ に対し,

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}((1-\theta(x))a + \theta(x)x)}{(n+1)!} (x-a)^{n+1}$$

を満たす $0 < \theta(x) < 1$ が存在する. さらに, $R_n(x) = \frac{f^{(n+1)}((1-\theta(x))a+\theta(x)x)}{(n+1)!}(x-a)^{n+1}$ とおくと, $R_n(x) = o((x-a)^n)$ $(x \to a)$.

証明. 省略 (微分積分学 I).

定理 3.2.1 (Taylor の定理). $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $a \in U$, $n \in \mathbb{N}$, $f : U \to \mathbb{R}$ を $U \perp$ の C^{n+1} 級関数 とすると, $\{(1-t)a+tx \; ; \; 0 \leq t \leq 1\} \subseteq U$ を満たす任意の $x \in U$ に対し,

$$f(x) = \sum_{|\alpha| \le n} \frac{f^{(\alpha)}(a)}{\alpha!} (x - a)^{\alpha} + \sum_{|\alpha| = n+1} \frac{f^{(\alpha)}((1 - \theta(x))a + \theta(x)x)}{\alpha!} (x - a)^{\alpha}$$

を満たす $0 < \theta(x) < 1$ が存在する. さらに, $R_n(x) = \sum_{|\alpha|=n+1} \frac{f^{(\alpha)}((1-\theta(x))a+\theta(x)x)}{\alpha!} (x-a)^{\alpha}$ とおくと, $R_n(x) = o(|x-a|^n)$ $(x \to a)$.

● 双線型形式, 2 次形式

定義 3.2.1. $A \in M_2(\mathbb{R})$ とする.

(1)

$$B_A(x,y) = \sum_{(i,j)=(1,1)}^{(2,2)} a_{ij} x_i y_j \quad (x,y \in \mathbb{R}^2)$$

によって定義される $B_A: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ を A を係数行列とする**双線型形式**と言う.

(2)

$$Q_A(x) = B_A(x, x) \quad (x \in \mathbb{R}^2)$$

によって定義される $Q_A: \mathbb{R}^2 \to \mathbb{R}$ を A を係数行列とする $\mathbf{2}$ 次形式と言う.

定義 3.2.2. $A \in M_2(\mathbb{R})$ とする. A が対称 (または自己共役) であるとは, A が $A = {}^t A$ を満たすことを言う. また, 2 次対称行列全体の集合を

$$S_2(\mathbb{R}) = \{ A \in M_2(\mathbb{R}) ; A = {}^t A \}$$

と書く.

命題 3.2.1. $A \in S_2(\mathbb{R})$ とする.

- (1) $Q_A(x+y) = Q_A(x) + 2B_A(x,y) + Q_A(y) \ (x,y \in \mathbb{R}^2).$
- (2) $Q_A(ax) = a^2 Q_A(x) \ (a \in \mathbb{R}, \ x \in \mathbb{R}).$

証明. 省略 (講義の自筆ノート).

定義 3.2.3. $A \in S_2(\mathbb{R})$ とする.

- (1) A が**正値**であるとは、任意の $x \in \mathbb{R}^2 \setminus \{0\}$ に対して $Q_A(x) > 0$ のことを言う.
- (2) A が**負値**であるとは、任意の $x \in \mathbb{R}^2 \setminus \{0\}$ に対して $Q_A(x) < 0$ のことを言う.
- (3) A が**不定値**であるとは, $Q_A(x^+) > 0$, $Q_A(x^-) < 0$ を満たす $x^{\pm} \in \mathbb{R}^2 \setminus \{0\}$ が存在することを言う.

定義 3.2.4. $A \in M_2(\mathbb{R})$ とする.

- (1) $trA = a_{11} + a_{22}$ を A の跡 (trace) と言う.
- (2) $\det A = a_{11}a_{22} a_{12}a_{21}$ を A の行列式 (determinant) と言う.

命題 3.2.2. $A \in S_2(\mathbb{R})$ とする.

- (1) A は正値 $\Leftrightarrow a_{11} > 0$, $\det A > 0$.
- (2) A は負値 $\Leftrightarrow a_{11} < 0$, $\det A > 0$.
- (3) A は不定値 \Leftrightarrow det A < 0.

● Hesse 行列と関数の極大・極小

定義 3.2.5. $U \subset \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}$ を U 上の C^2 級関数とする.

$$H_f(x) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) \end{pmatrix} \quad (x \in U)$$

によって定義される $H_f: U \to S_2(\mathbb{R})$ を f の **Hesse 行列**と言う.

命題 3.2.3. $U \subset \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $a \in U$, $f: U \to \mathbb{R}$ を U 上の C^2 級関数とする.

- (1) $H_f(a)$ は正値 $\Leftrightarrow \frac{\partial^2 f}{\partial x_1^2}(a) > 0$, $\det H_f(a) > 0$.
- (2) $H_f(a)$ は負値 $\Leftrightarrow \frac{\partial^2 f}{\partial x_1^2}(a) < 0$, $\det H_f(a) > 0$.
- (3) $H_f(a)$ は不定値 $\Leftrightarrow \det H_f(a) < 0$.

証明. 省略 (講義の自筆ノート).

定義 3.2.6. $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}$ を U 上の関数とする.

(1) f が $a \in U$ で極大であるとは、ある $\delta > 0$ が存在し、 $|x - a| < \delta$ を満たす任意の $x \in U$ に対して

が成り立つことを言う.

(2) f が $a \in U$ で極小であるとは、ある $\delta > 0$ が存在し、 $|x - a| < \delta$ を満たす任意の $x \in U$ に対して

$$f(x) \ge f(a)$$

が成り立つことを言う.

定義 3.2.7. $U \subset \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}$ を U 上の関数とする.

(1) f が $a \in U$ で狭義極大であるとは、ある $\delta > 0$ が存在し、 $0 < |x-a| < \delta$ を満たす任意の $x \in U$ に対して

が成り立つことを言う.

(2) f が $a \in U$ で狭義極小であるとは、ある $\delta > 0$ が存在し、 $0 < |x-a| < \delta$ を満たす任意の $x \in U$ に対して

が成り立つことを言う.

定義 3.2.8. $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}$ を U 上の関数とする. f が $a \in U$ で鞍 (くら) または峠 (とうげ) であるとは, ある $\delta > 0$, $x^{\pm} \in \mathbb{R}^2 \setminus \{0\}$ が存在し,

$$\varphi^{-}(t) = f(a + tx^{-}), \quad \varphi^{+}(t) = f(a + tx^{+}) \quad (-\delta < t < \delta)$$

によって定義される $\varphi^-, \varphi^+: (-\delta, \delta) \to \mathbb{R}$ が 0 でそれぞれ狭義極大, 狭義極小であることを言う.

命題 3.2.4. $U\subseteq\mathbb{R}^2$ を \mathbb{R}^2 の開集合, $a\in U,\,f:U\to\mathbb{R}$ を U 上の全微分可能関数とするとき, f が a で極大または極小ならば, f'(a)=0.

証明. 省略 (講義の自筆ノート).

定義 3.2.9. $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}$ を U 上の全微分可能関数とする. f'(a) = 0 を満たす $a \in U$ を f の停留点と言う.

命題 3.2.5. $U \subset \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}$ を U 上の C^2 級関数, $a \in U$ を f の停留点とする.

- (1) $H_f(a)$ が正値ならば, f は a で狭義極小である.
- (2) $H_f(a)$ が負値ならば, f は a で狭義極大である.
- (3) $H_f(a)$ が不定値ならば, f は a で鞍である.

証明. 省略 (講義の自筆ノート).

例. \mathbb{R}^2 上の関数 $f: \mathbb{R}^2 \to \mathbb{R}$ を

$$f(x,y) = x^3 + y^3 - 3xy \quad ((x,y) \in \mathbb{R}^2)$$

によって定義すると, f は (1,1) で狭義極小であり, (0,0) で鞍である.

3.3 陰関数定理と関数の条件付き極値

● 陰関数定理, 逆関数定理

定義 3.3.1. $d \in \{1,2\}$, $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $V \subseteq \mathbb{R}^d$ を \mathbb{R}^d の開集合, $f: U \times V \to \mathbb{R}^d$ を $U \times V \perp$ の関数とする.

(1) $y \in V \ \text{\ensuremath{V}}$ 2 $\text{\ensuremath{$V$}}$ 3.

$$f^y(x) = f(x,y) \quad (x \in U)$$

によって定義される $f^y: U \to \mathbb{R}$ を f の y 切片と言う.

(2) $y \in V$, f^y は U で全微分可能であるとする.

$$\frac{\partial f}{\partial x}(x,y) = (f^y)'(x) \quad (x \in U)$$

によって定義される $\frac{\partial f}{\partial x}(*,y):U\to\mathbb{R}^2$ を f の x についての**全導関数**と言う.

定理 3.3.1 (陰関数定理 I). $d \in \{1,2\}$, $U \subseteq \mathbb{R}^d$ を \mathbb{R}^d の開集合, $a \in U$, $V \subseteq \mathbb{R}$ を \mathbb{R} の開集合, $b \in V$, $n \in \mathbb{N}$, $n \geq 1$, $f: U \times V \to \mathbb{R}$ を $U \times V$ 上の C^n 級関数とするとき,

$$f(a,b) = 0, \quad \frac{\partial f}{\partial u}(a,b) \neq 0$$

ならば、次の (i), (ii) を満たす \mathbb{R}^d の開集合 $U'\subseteq U$, \mathbb{R} の開集合 $V'\subseteq V$ と U' 上の C^n 級関数 $\varphi:U'\to V'$ が存在する.

- (i) $a \in U'$, $b \in V'$, $\varphi(a) = b$.
- (ii) $\forall x \in U', \forall y \in V', (f(x, y) = 0 \Leftrightarrow y = \varphi(x)).$

さらに,

$$\varphi'(x) = -\frac{\partial f}{\partial u}(x, \varphi(x))^{-1} \frac{\partial f}{\partial x}(x, \varphi(x)) \quad (x \in U')$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 3.3.2. $d \in \{1,2\}, U \subseteq \mathbb{R}^d$ を \mathbb{R}^d の開集合, $V \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \times V \to \mathbb{R}^2$ を $U \times V$ 上の関数とする.

$$f_x(y) = f(x,y) \quad (y \in V)$$

П

によって定義される $f_x: V \to \mathbb{R}^2$ を f の x 切片と言う.

(2) $x \in U$, f_x は V で全微分可能であるとする.

$$\frac{\partial f}{\partial y}(x,y) = (f_x)'(y) \quad (y \in V)$$

によって定義される $\frac{\partial f}{\partial y}(x,*):V\to M_2(\mathbb{R})$ を f の y についての**全導関数**と言う.

定理 3.3.2 (陰関数定理 II). $d \in \{1,2\}, U \subseteq \mathbb{R}^d$ を \mathbb{R}^d の開集合, $a \in U, V \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $b \in V$, $n \in \mathbb{N}, n \geq 1, f: U \times V \to \mathbb{R}^2$ を $U \times V$ 上の C^n 級関数とするとき,

$$f(a,b) = 0$$
, $\det \frac{\partial f}{\partial y}(a,b) \neq 0$

ならば, 次の (i), (ii) を満たす \mathbb{R}^d の開集合 $U'\subseteq U$, \mathbb{R}^2 の開集合 $V'\subseteq V$ と U' 上の C^n 級関数 $\varphi:U'\to V'$ が存在する.

- (i) $a \in U'$, $b \in V'$, $\varphi(a) = b$.
- (ii) $\forall x \in U', \forall y \in V', (f(x, y) = 0 \Leftrightarrow y = \varphi(x)).$

さらに,

$$\varphi'(x) = -\frac{\partial f}{\partial y}(x, \varphi(x))^{-1} \frac{\partial f}{\partial x}(x, \varphi(x)) \quad (x \in U')$$

が成り立つ.

証明. 省略 (定理 3.3.1).

定理 3.3.3 (逆関数定理). $U\subseteq\mathbb{R}^2$ を \mathbb{R}^2 の開集合, $a\in U,\,n\in\mathbb{N},\,n\geq 1,\,f:U\to\mathbb{R}^2$ を U 上の C^n 級 関数とするとき.

$$\det f'(a) \neq 0$$

ならば, 次の (i), (ii) を満たす \mathbb{R}^2 の開集合 $U'\subseteq U$, \mathbb{R}^2 の開集合 $V'\subseteq \mathbb{R}^2$ と V' 上の C^n 級関数 $g:V'\to U'$ が存在する.

- (i) $a \in U'$, $f(a) \in V'$.
- (ii) f は U' から V' への全単射であり, $g = (f|_{U'})^{-1}$.

さらに,

$$g'(f(x)) = f'(x)^{-1} \quad (x \in U')$$

が成り立つ.

証明. 省略 (定理 3.3.2).

● Lagrange の乗数法と関数の条件付き極値

命題 3.3.1 (Lagrange の乗数法). $U,V\subseteq\mathbb{R}$ を \mathbb{R} の開集合, $f,g:U\times V\to\mathbb{R}$ を $U\times V$ 上の C^1 級関数 とする. $C=\{(x,y)\in U\times V\; ;\; g(x,y)=0\}$ とおくとき, f が $(a,b)\in C$ で極大または極小ならば, f,g, (a,b) は次の (i), (ii) のいずれか一つだけを満たす.

- (i) g'(a,b) = 0.
- (ii) $U \times V \times \mathbb{R}$ 上の関数 $\varphi : U \times V \times \mathbb{R} \to \mathbb{R}$ を

$$\varphi(x, y, \lambda) = f(x, y) - \lambda g(x, y) \quad ((x, y) \in U \times V, \ \lambda \in \mathbb{R})$$

によって定義すると, $\varphi'(a,b,\gamma) = 0$ を満たす $\gamma \in \mathbb{R}$ が存在する.

証明. 省略 (講義の自筆ノート).

例. $C = \{(x,y) \in \mathbb{R}^2 ; x^2 + y^2 = 1\}$ とおき, $C \perp \mathcal{O}$ 関数 $f: C \to \mathbb{R}$ を

$$f(x,y) = x - 2y \quad ((x,y) \in C)$$

によって定義すると, f は $\left(\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}}\right)$ で最大であり, $\left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$ で最小である.

第4章 多変数関数の積分法

4.1 有界閉区間での多重積分

• 多重積分

定義 4.1.1. $a_i, b_i \in \mathbb{R}, a_i < b_i \ (i \in \{1, 2\}) \ \texttt{と} \ \texttt{し}, \ I = [a_1, b_1] \times [a_2, b_2] \ \texttt{とおく}. \ f: I \to \mathbb{R} \ \texttt{を} \ I \ \texttt{上の有界}$ 関数とする.

(1) $\Delta = \{(x_{1,k_1},x_{2,k_2}) \; ; \; (k_1,k_2) \in \{0,1,\cdots,n_1\} \times \{0,1,\cdots,n_2\} \}$ が I の分割であるとは、 Δ が

$$a_1 = x_{1,0} < x_{1,1} < \cdots < x_{1,n_1} = b_1,$$

$$a_2 = x_{2,0} < x_{2,1} < \dots < x_{2,n_2} = b_2$$

を満たすことを言う. また, I の分割全体の集合を $\mathcal{D}(I)$ と書く.

(2) 任意の $\Delta \in \mathcal{D}(I)$ に対し,

$$I_{(k_1,k_2)} = [x_{1,k_1-1},x_{1,k_1}] \times [x_{2,k_2-1},x_{2,k_2}] \quad ((k_1,k_2) \in \{1,\cdots,n_1\} \times \{1,\cdots,n_2\})$$

 $を I の \Delta による$ **小区間**と言う. さらに、

$$d(I_{(k_1,k_2)}) = \sqrt{(x_{1,k_1}-x_{1,k_1-1})^2 + (x_{2,k_2}-x_{2,k_2-1})^2} \quad ((k_1,k_2) \in \{1,\cdots,n_1\} \times \{1,\cdots,n_2\})$$
を $I_{(k_1,k_2)}$ の直径と言い、

$$d(\Delta) = \max_{(k_1, k_2) \in \{1, \dots, n_1\} \times \{1, \dots, n_2\}} d(I_{(k_1, k_2)})$$

を Δ の幅と言う.

(3) 任意の $\Delta \in \mathcal{D}(I)$ に対し、 $\xi = \{(\xi_{1,k_1}, \xi_{2,k_2}) \; ; \; (k_1,k_2) \in \{1,\cdots,n_1\} \times \{1,\cdots,n_2\}\}$ が Δ の代表点系であるとは、 ξ が

$$x_{1,0} \le \xi_{1,1} \le x_{1,1}, \quad \cdots, \quad x_{1,n_1-1} \le \xi_{1,n_1} \le x_{1,n_1},$$

$$x_{2,0} \le \xi_{2,1} \le x_{2,1}, \quad \cdots, \quad x_{2,n_2-1} \le \xi_{2,n_2} \le x_{2,n_2}$$

を満たすことを言う. また, Δ の代表点系全体の集合を $\mathcal{X}(\Delta)$ と書く.

(4) 任意の $\Delta \in \mathcal{D}(I)$ に対し,

$$S(f; \Delta, \xi) = \sum_{(k_1, k_2) = (1, 1)}^{(n_1, n_2)} f(\xi_{1, k_1}, \xi_{2, k_2}) (x_{1, k_1} - x_{1, k_1 - 1}) (x_{2, k_2} - x_{2, k_2 - 1}) \quad (\xi \in \mathcal{X}(\Delta))$$

によって定義される $S(f; \Delta, *): \mathcal{X}(\Delta) \to \mathbb{R}$ を f の Δ による **Riemann 和**と言う.

定義 4.1.2 (ε - δ 論法). $a_i, b_i \in \mathbb{R}$, $a_i < b_i$ ($i \in \{1,2\}$) とし, $I = [a_1,b_1] \times [a_2,b_2]$ とおく. $f: I \to \mathbb{R}$ を I 上の有界関数とする. $d(\Delta) \to +0$ のとき, $S(f; \Delta, *)$ が $R \in \mathbb{R}$ に I で一様収束するとは, 任意の $\varepsilon > 0$ に対してある $\delta(\varepsilon) > 0$ が存在し, $d(\Delta) < \delta(\varepsilon)$ を満たす任意の $\Delta \in \mathcal{D}(I)$ に対して

$$\sup_{\xi \in \mathcal{X}(\Delta)} |S(f; \Delta, \xi) - R| < \varepsilon$$

が成り立つことを言う. このとき, $\lim_{d(\Delta)\to +0} S(f;\Delta,*) = R$ と書く.

- 定義 4.1.2 の論理式 -

$$\forall \varepsilon > 0, \ \exists \delta(\varepsilon) > 0, \ \forall \Delta \in \mathcal{D}(I), \ \left(d(\Delta) < \delta(\varepsilon) \Rightarrow \sup_{\xi \in \mathcal{X}(\Delta)} |S(f; \Delta, \xi) - R| < \varepsilon \right).$$

定義 4.1.3. $a_i, b_i \in \mathbb{R}, a_i < b_i \ (i \in \{1,2\}) \ \texttt{と} \ \texttt{し}, \ I = [a_1, b_1] \times [a_2, b_2] \ \texttt{とおく}. \ f : I \to \mathbb{R} \ \texttt{を} \ I \ \texttt{上の有界}$ 関数とする. f が I で可積分であるとは、

$$\lim_{d(\Delta)\to+0} S(f;\Delta,*) = R$$

となる $R \in \mathbb{R}$ が存在することを言う. このとき,

$$R = \iint_{I} f(x)dx \left(= \iint_{I} f(x_1, x_2)dx_1dx_2 \right)$$

と書き, $\iint_I f(x)dx$ を f の I での**積分**と言う.

注意. $a_i, b_i \in \mathbb{R}, a_i < b_i \ (i \in \{1, 2\})$ とし, $I = [a_1, b_1] \times [a_2, b_2]$ とおくと, 1 は I で可積分であり,

$$\iint_{I} 1 dx = (b_1 - a_1)(b_2 - a_2)$$

が成り立つ. これより,

$$(b_1 - a_1)(b_2 - a_2) = a(I)$$

と書き, a(I) を I の**面積**と言う.

• 上積分・下積分

定義 4.1.4. $a_i, b_i \in \mathbb{R}, a_i < b_i \ (i \in \{1, 2\}) \ \text{とし}, \ I = [a_1, b_1] \times [a_2, b_2] \ \text{とおく}. \ f : I \to \mathbb{R} \ \text{を} \ I \ \text{上の有界}$ 関数とする. 任意の $\Delta \in \mathcal{D}(I)$ に対し、

$$\overline{S}(f;\Delta) = \sum_{(k_1,k_2)=(1,1)}^{(n_1,n_2)} \sup_{x \in I_{(k_1,k_2)}} f(x)(x_{1,k_1} - x_{1,k_1-1})(x_{2,k_2} - x_{2,k_2-1}),$$

$$\underline{S}(f;\Delta) = \sum_{(k_1,k_2)=(1,1)}^{(n_1,n_2)} \inf_{x \in I_{(k_1,k_2)}} f(x)(x_{1,k_1} - x_{1,k_1-1})(x_{2,k_2} - x_{2,k_2-1})$$

をそれぞれ f の Δ による Riemann 上限和, Riemann 下限和と言う.

命題 4.1.1. $a_i, b_i \in \mathbb{R}, a_i < b_i \ (i \in \{1, 2\})$ とし, $I = [a_1, b_1] \times [a_2, b_2]$ とおく. $f: I \to \mathbb{R}$ を I 上の有界 関数とする.

(1) 任意の $\Delta \in \mathcal{D}(I)$ に対して

$$\inf_{x \in I} f(x)(b_1 - a_1)(b_2 - a_2) \le \underline{S}(f; \Delta) \le \overline{S}(f; \Delta) \le \sup_{x \in I} f(x)(b_1 - a_1)(b_2 - a_2)$$

が成り立つ.

(2) $\Delta \subseteq \Delta'$ を満たす任意の $\Delta, \Delta' \in \mathcal{D}(I)$ に対して

$$\underline{S}(f; \Delta) \le \underline{S}(f; \Delta'),$$

$$\overline{S}(f; \Delta) \ge \overline{S}(f; \Delta')$$

が成り立つ.

証明. 省略(微分積分学II).

定義 4.1.5. $a_i, b_i \in \mathbb{R}, a_i < b_i \ (i \in \{1, 2\}) \ \texttt{と} \ \texttt{し}, \ I = [a_1, b_1] \times [a_2, b_2] \ \texttt{とおく}. \ f: I \to \mathbb{R} \ \texttt{を} \ I \ \texttt{上の有界}$ 関数とする.

$$\overline{S}(f) = \inf_{\Delta \in \mathcal{D}(I)} \overline{S}(f; \Delta),$$

$$\underline{S}(f) = \sup_{\Delta \in \mathcal{D}(I)} \underline{S}(f; \Delta)$$

をそれぞれ f の I での上積分、下積分と言う.

命題 4.1.2. $a_i, b_i \in \mathbb{R}, \ a_i < b_i \ (i \in \{1,2\}) \$ とし、 $I = [a_1,b_1] \times [a_2,b_2] \$ とおく. $f:I \to \mathbb{R}$ を I 上の有界 関数とする.

(1) 任意の $\Delta, \Delta' \in \mathcal{D}(I)$ に対して

$$S(f, \Delta) \leq \overline{S}(f; \Delta')$$

が成り立つ.

(2) $\underline{S}(f) \leq \overline{S}(f)$.

• Darboux の可積分条件

補題 4.1.1 (はさみうちの原理). $a_i,b_i\in\mathbb{R},\ a_i< b_i\ (i\in\{1,2\})$ とし, $I=[a_1,b_1]\times[a_2,b_2]$ とおく. $f:I\to\mathbb{R}$ を I 上の有界関数とする. $d(\Delta)\to +0$ のとき, $\underline{S}(f;\Delta)$, $\overline{S}(f;\Delta)$ が I で一様収束し, かつ $\lim_{d(\Delta)\to +0} \underline{S}(f;\Delta)=\lim_{d(\Delta)\to +0} \overline{S}(f;\Delta)$ ならば, f は I で可積分であり,

$$\iint_{I} f(x)dx = \lim_{d(\Delta) \to +0} \underline{S}(f; \Delta) = \lim_{d(\Delta) \to +0} \overline{S}(f; \Delta)$$

が成り立つ.

証明. 省略(微分積分学II).

定理 4.1.1 (Darboux の定理). $a_i, b_i \in \mathbb{R}, \ a_i < b_i \ (i \in \{1,2\}) \ \texttt{とし}, \ I = [a_1,b_1] \times [a_2,b_2] \ \texttt{とおく}.$ $f: I \to \mathbb{R}$ を I 上の有界関数とすると、

$$\lim_{d(\Delta)\to+0} \underline{S}(f;\Delta) = \underline{S}(f),$$

$$\lim_{d(\Delta)\to +0} \overline{S}(f;\Delta) = \overline{S}(f)$$

が成り立つ.

証明. 省略 (微分積分学 II).

定理 4.1.2 (Darboux の可積分条件). $a_i, b_i \in \mathbb{R}, a_i < b_i \ (i \in \{1,2\}) \$ とし、 $I = [a_1,b_1] \times [a_2,b_2] \$ とおく. $f:I \to \mathbb{R}$ を I 上の有界関数とすると、次の (i)–(iii) は互いに同値である.

- (i) *f* は *I* で可積分である.
- (ii) $\lim_{d(\Delta)\to+0} (\overline{S}(f;\Delta) \underline{S}(f;\Delta)) = 0.$
- (iii) $\underline{S}(f) = \overline{S}(f)$.

さらに、f が (i)-(iii) のいずれか一つを満たせば、

$$\iint_{I} f(x)dx = \underline{S}(f) = \overline{S}(f)$$

が成り立つ.

• 可積分関数と多重積分

命題 4.1.3 (和・スカラー倍の可積分性)。 $a_i,b_i \in \mathbb{R},\ a_i < b_i\ (i \in \{1,2\})$ とし, $I = [a_1,b_1] \times [a_2,b_2]$ とおく. $f,g:I \to \mathbb{R}$ を I 上の有界関数, $c \in \mathbb{R}$ とする.

(1) f, g が I で可積分ならば, f + g は I で可積分であり,

$$\iint_{I} (f(x) + g(x))dx = \iint_{I} f(x)dx + \iint_{I} g(x)dx$$

が成り立つ.

(2) f が I で可積分ならば, cf は I で可積分であり,

$$\iint_{I} cf(x)dx = c \iint_{I} f(x)dx$$

が成り立つ.

証明. 省略 (微分積分学 II).

命題 4.1.4 (積・商の可積分性). $a_i,b_i \in \mathbb{R},\ a_i < b_i\ (i \in \{1,2\})$ とし, $I = [a_1,b_1] \times [a_2,b_2]$ とおく. $f,g:I \to \mathbb{R}$ を I 上の有界関数とする.

- (1) f, g が I で可積分ならば, fg は I で可積分である.
- (2) f,g が I で可積分であり、かつ $\frac{1}{g}$ が I で有界ならば、 $\frac{f}{g}$ は I で可積分である.

証明. 省略 (微分積分学 II).

命題 4.1.5 (積分の単調性). $a_i,b_i \in \mathbb{R}, a_i < b_i \ (i \in \{1,2\})$ とし, $I = [a_1,b_1] \times [a_2,b_2]$ とおく. $f,g:I \to \mathbb{R}$ を I 上の有界関数とするとき, $\forall x \in I$, $f(x) \leq g(x)$, かつ f,g が I で可積分ならば,

$$\iint_{I} f(x)dx \le \iint_{I} g(x)dx$$

が成り立つ.

証明. 省略 (微分積分学 II).

命題 4.1.6 (積分の三角不等式). $a_i, b_i \in \mathbb{R}, \ a_i < b_i \ (i \in \{1,2\})$ とし, $I = [a_1,b_1] \times [a_2,b_2]$ とおく. $f:I \to \mathbb{R}$ を I 上の有界関数とするとき, f が I で可積分ならば, |f| は I で可積分であり,

$$\left| \iint_{I} f(x) dx \right| \leq \iint_{I} |f(x)| dx$$

が成り立つ.

• 累次積分

(1) $a_1 \le x_1 \le b_1 \ge 3$

$$f_{x_1}(x_2) = f(x_1, x_2) \quad (a_2 \le x_2 \le b_2)$$

によって定義される $f_{x_1}:[a_2,b_2]\to\mathbb{R}$ を f の x_1 切片と言う.

$$f^{x_2}(x_1) = f(x_1, x_2) \quad (a_1 \le x_1 \le b_1)$$

によって定義される $f^{x_2}:[a_1,b_1]\to\mathbb{R}$ を f の x_2 切片と言う.

定理 **4.1.3** (Fubini の定理 I). $a_i, b_i \in \mathbb{R}, a_i < b_i \ (i \in \{1, 2\}) \ \text{とし}, I = [a_1, b_1] \times [a_2, b_2] \ \text{とおく}. \ f : I \to \mathbb{R}$ を I 上の連続関数とする.

(1)
$$\int_{a_2}^{b_2} f_*(x_2) dx_2 : [a_1, b_1] \to \mathbb{R}$$
 は $[a_1, b_1]$ で連続である.

$$(2)$$
 $\int_{a_1}^{b_1} f^*(x_1) dx_1 : [a_2, b_2] \to \mathbb{R}$ は $[a_2, b_2]$ で連続である.

証明. 省略.

定理 4.1.4 (Fubini の定理 II). $a_i, b_i \in \mathbb{R}, \ a_i < b_i \ (i \in \{1,2\}) \ \texttt{とし}, \ I = [a_1,b_1] \times [a_2,b_2] \ \texttt{とおく}.$ $f:I \to \mathbb{R}$ を I 上の連続関数とする.

(1) (累次積分)

$$\iint_I f(x_1, x_2) dx_1 dx_2 = \int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} f(x_1, x_2) dx_2 \right) dx_1$$

が成り立つ.

(2) (累次積分)

$$\iint_{I} f(x_1, x_2) dx_1 dx_2 = \int_{a_2}^{b_2} \left(\int_{a_1}^{b_1} f(x_1, x_2) dx_1 \right) dx_2$$

が成り立つ.

証明. 省略.

例.
$$\iint_{[0,1]^2} \frac{1}{(x+y+1)^2} dx dy = 2\log 2 - \log 3.$$

4.2 一般の集合での多重積分

• 多重積分

定義 4.2.1. $A \subset \mathbb{R}^2$ を \mathbb{R}^2 の部分集合とする.

$$\chi_A(x) = \begin{cases} 1 & (x \in A), \\ 0 & (x \in \mathbb{R}^2 \setminus A) \end{cases}$$

によって定義される $\chi_A:\mathbb{R}^2 \to \{0,1\}$ を A の特性関数または定義関数と言う.

命題 4.2.1 (多重積分の well-definedness). $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の有界集合, $I \subseteq \mathbb{R}^2$ を $A \subseteq I$ を満たす \mathbb{R}^2 の有界閉区間, $f: A \to \mathbb{R}$ を A 上の有界関数とするとき, $f\chi_A$ が I で可積分ならば, $A \subseteq J$ を満たす \mathbb{R}^2 の任意の有界閉区間 $J \subseteq \mathbb{R}^2$ に対して $f\chi_A$ は J で可積分であり,

$$\iint_{J} f(x)\chi_{A}(x)dx = \iint_{I} f(x)\chi_{A}(x)dx$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 4.2.2. $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の有界集合, $I \subseteq \mathbb{R}^2$ を $A \subseteq I$ を満たす \mathbb{R}^2 の有界閉区間, $f: A \to \mathbb{R}$ を $A \perp$ の有界関数とする. f が A で**可積分**であるとは, $f\chi_A$ が I で可積分であることを言う. このとき,

$$\iint_{I} f(x)\chi_{A}(x)dx = \iint_{A} f(x)dx \left(= \iint_{A} f(x_{1}, x_{2})dx_{1}dx_{2} \right)$$

と書き, $\iint_A f(x)dx$ を f の A での**積分**と言う.

注意. 一般の集合での多重積分に対しても, 命題 4.1.3-命題 4.1.6 と同様の命題が成り立つ.

● 面積

定義 4.2.3. $A \subset \mathbb{R}^2$ を \mathbb{R}^2 の有界集合とする.

(1) A が面積確定であるとは、1 が A で可積分であることを言う. このとき、

$$a(A) = \iint_A 1 dx$$

を A の面積と言う.

(2) A が面積零であるとは, A が面積確定であり, a(A) = 0 であることを言う.

定理 4.2.1. 面積は有限加法的である. つまり, 次の(i), (ii) を満たす.

- (i) $a(\emptyset) = 0$.
- (ii) $A, B \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の有界集合とするとき, A, B が面積確定ならば, $A \cup B, A \cap B$ は面積確定であり,

$$a(A \cup B) + a(A \cap B) = a(A) + a(B)$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

例 (有界閉区間塊). $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の有界集合, $K \subseteq \mathbb{R}^2$ を $A \subseteq K$ を満たす \mathbb{R}^2 の有界閉区間, $\Delta \in \mathcal{D}(K)$ とする.

$$(1) \ \ I = \bigcup_{(k_1,k_2) \in \underline{K}} I_{(k_1,k_2)}, \, \underline{K} = \{(k_1,k_2) \; ; \; I_{(k_1,k_2)} \subseteq A \} \; \texttt{とおくと}, \, I \, は面積確定であり,$$

$$a(I) = \underline{S}(\chi_A; \Delta)$$

が成り立つ.

(2) $J = \bigcup_{\substack{(k_1,k_2) \in \overline{K}}} I_{(k_1,k_2)}, \, \overline{K} = \{(k_1,k_2) \; ; \; I_{(k_1,k_2)} \cap A \neq \emptyset \}$ とおくと, J は面積確定であり,

$$a(J) = \overline{S}(\chi_A; \Delta)$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定理 4.2.2. 面積は**正則**である. つまり, $A \subset \mathbb{R}^2$ を \mathbb{R}^2 の有界集合とすると, 次の (i), (ii) は同値である.

- (i) *A* は面積確定である.
- (ii) 任意の $\varepsilon > 0$ に対し、

$$I \subseteq A \subseteq J$$
, $a(J \setminus I) < \varepsilon$

を満たす \mathbb{R}^2 の有界閉区間塊 $I,J \subset \mathbb{R}^2$ が存在する.

例 (縦線閉領域)。 $a,b \in \mathbb{R},\ a < b,\ \varphi,\psi:[a,b] \to \mathbb{R}$ を [a,b] 上の連続関数で、 $\varphi \leq \psi$ 、つまり、 $\forall x \in [a,b]$ 、 $\varphi(x) \leq \psi(x)$ を満たすものとし、

$$A = \{(x, y) \in \mathbb{R}^2 ; a \le x \le b, \varphi(x) \le y \le \psi(x)\}$$

とおくと, A は面積確定である.

証明. 省略 (講義の自筆ノート).

定理 4.2.3. 面積は完備である. つまり, $N\subseteq\mathbb{R}^2$ を \mathbb{R}^2 の有界集合とするとき, N が面積零ならば, N の 任意の部分集合は面積零である.

● 連続関数の可積分性

定義 4.2.4. $d \in \{1,2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $f:A \to \mathbb{R}$ を A 上の有界関数とする.

$$\omega(f;A) = \sup_{x,y \in A} |f(x) - f(y)|$$

をfのAでの振幅と言う.

命題 4.2.2. $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $f:A \to \mathbb{R}$ を A 上の有界関数とする. $a_i,b_i \in \mathbb{R}$, $a_i < b_i \ (i \in \{1,2\})$ とし, $I = [a_1,b_1] \times [a_2,b_2]$ とおく.

- $(1) \ \omega(f;A) = \sup_{x \in A} f(x) \inf_{x \in A} f(x).$
- (2) (A = I) 任意の $\Delta \in \mathcal{D}(I)$ に対して

$$\overline{S}(f;\Delta) - \underline{S}(f;\Delta) = \sum_{(k_1,k_2)=(1,1)}^{(n_1,n_2)} \omega(f;I_{(k_1,k_2)})(x_{1,k_1} - x_{1,k_1-1})(x_{2,k_2} - x_{2,k_2-1})$$

が成り立つ.

証明. 省略 (微分積分学 II).

定理 4.2.4 (連続関数の可積分性). $K\subseteq\mathbb{R}^2$ を \mathbb{R}^2 のコンパクトな面積確定集合, $f:K\to\mathbb{R}$ を K 上の 関数とするとき, f が K で連続ならば, f は K で可積分である.

• 可積分関数と多重積分

命題 4.2.3 (積分の有限加法性). $A,B\subseteq\mathbb{R}^2$ を \mathbb{R}^2 の有界な面積確定集合, $f:A\cup B\to\mathbb{R}$ を $A\cup B$ 上の有界関数とすると, 次の (i), (ii) は同値である.

- (i) f は $A \cup B$ で可積分である.
- (ii) f は A, B で可積分である.

さらに, f が (i) または (ii) を満たせば, f は $A \cap B$ で可積分であり,

$$\iint_{A \cup B} f(x) dx + \iint_{A \cap B} f(x) dx = \iint_{A} f(x) dx + \iint_{B} f(x) dx$$

が成り立つ.

• 連続関数と多重積分

命題 4.2.4 (積分の強単調性). $K\subseteq\mathbb{R}^2$ を \mathbb{R}^2 のコンパクトな面積確定集合, $f,g:K\to\mathbb{R}$ を K 上の連続関数とするとき, $\forall x\in K,$ $f(x)\leq g(x),$ かつ $\exists x_0\in K,$ $f(x_0)< g(x_0)$ ならば,

$$\iint_K f(x) dx < \iint_K g(x) dx$$

が成り立つ.

証明. 省略(微分積分学II).

命題 4.2.5. $K\subseteq\mathbb{R}^2$ を \mathbb{R}^2 のコンパクトな面積確定集合, $f:K\to\mathbb{R}$ を K 上の連続関数とするとき, f が

$$\iint_K |f(x)| dx = 0$$

を満たせば, f = 0 である.

• 累次積分

定義 4.2.5. $A \subset \mathbb{R}^2$ を \mathbb{R}^2 の部分集合とする.

- (1) $x_1 \in \mathbb{R}$ とする. $A_{x_1} = \{x_2 \in \mathbb{R} ; (x_1, x_2) \in A\}$ を A の x_1 切片と言う.
- (2) $x_2 \in \mathbb{R}$ とする. $A^{x_2} = \{x_1 \in \mathbb{R} ; (x_1, x_2) \in A\}$ を A の x_2 切片と言う.

定義 4.2.6. $A \subset \mathbb{R}^2$ を \mathbb{R}^2 の部分集合, $f: A \to \mathbb{R}$ を A 上の関数とする.

(1) $I = \{x_1 \in \mathbb{R} ; A_{x_1} \neq \emptyset\}$ とおき, $x_1 \in I$ とする.

$$f_{x_1}(x_2) = f(x_1, x_2) \quad (x_2 \in A_{x_1})$$

によって定義される $f_{x_1}: A_{x_1} \to \mathbb{R}$ を f の x_1 切片と言う.

(2) $J = \{x_2 \in \mathbb{R} ; A^{x_2} \neq \emptyset\}$ とおき, $x_2 \in J$ とする.

$$f^{x_2}(x_1) = f(x_1, x_2) \quad (x_1 \in A^{x_2})$$

によって定義される $f^{x_2}: A^{x_2} \to \mathbb{R}$ を f の x_2 切片と言う.

定理 4.2.5 (Fubini の定理 I). $K \subseteq \mathbb{R}^2$ を \mathbb{R}^2 のコンパクトな面積確定集合, $f: K \to \mathbb{R}$ を K 上の連続 関数とする.

- (1) $I=\{x_1\in\mathbb{R}\;;\;K_{x_1}\neq\emptyset\}$ とおくと, $\int_{K_*}f_*(x_2)dx_2:I\to\mathbb{R}$ はI で連続である.
- (2) $J=\{x_2\in\mathbb{R}\;;\;K^{x_2}\neq\emptyset\}$ とおくと、 $\int_{K^*}f^*(x_1)dx_1:J\to\mathbb{R}$ はJで連続である.

証明. 省略.

定理 4.2.6 (Fubini の定理 II). $K\subseteq\mathbb{R}^2$ を \mathbb{R}^2 のコンパクトな面積確定集合, $f:K\to\mathbb{R}$ を K 上の連続 関数とする.

(1) (累次積分) $I = \{x_1 \in \mathbb{R} ; K_{x_1} \neq \emptyset\}$ とおくと,

$$\iint_K f(x_1, x_2) dx_1 dx_2 = \iint_I \left(\iint_{K_{x_1}} f(x_1, x_2) dx_2 \right) dx_1$$

が成り立つ.

(2) (累次積分) $J = \{x_2 \in \mathbb{R} ; K^{x_2} \neq \emptyset\}$ とおくと,

$$\iint_K f(x_1, x_2) dx_1 dx_2 = \iint_J \left(\iint_{K^{x_2}} f(x_1, x_2) dx_1 \right) dx_2$$

が成り立つ.

証明. 省略.

例 (縦線閉領域)。 $a,b \in \mathbb{R},\ a < b,\ \varphi,\psi:[a,b] \to \mathbb{R}$ を [a,b] 上の連続関数で、 $\varphi \leq \psi$ 、つまり、 $\forall x \in [a,b]$ 、 $\varphi(x) \leq \psi(x)$ を満たすものとし、

$$A = \{(x, y) \in \mathbb{R}^2 ; a \le x \le b, \varphi(x) \le y \le \psi(x)\}$$

とおくと、Aは面積確定であり、

$$a(A) = \int_{a}^{b} (\psi(x) - \varphi(x)) dx$$

が成り立つ.

4.3 変数変換公式

• アフィン写像と多重積分

定義 4.3.1. $A \in M_2(\mathbb{R})$ とする. A が正則であるとは, A が $\det A \neq 0$ を満たすことを言う. また, 2 次 正則行列全体の集合を

$$GL_2(\mathbb{R}) = \{ A \in M_2(\mathbb{R}) ; \det A \neq 0 \}$$

と書く.

定義 4.3.2. $a \in \mathbb{R}$ とする.

$$E_{12} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ E_{1}(a) = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}, \ E_{2}(a) = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}, \ E_{12}(a) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}, \ E_{21}(a) = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}$$

によって定義される E_{12} , $E_1(a)$ $(a \neq 0)$, $E_2(a)$ $(a \neq 0)$, $E_{12}(a)$, $E_{21}(a)$ を **2 次基本行列**と言う.

定理 4.3.1. $A \in M_2(\mathbb{R})$ とするとき, 次の (i), (ii) は同値である.

- (i) $A \in GL_2(\mathbb{R})$.
- (ii) A は有限個の 2 次基本行列の積である.

証明. 省略.

定理 4.3.2 (線型変換). $a_i, b_i \in \mathbb{R}, a_i < b_i \ (i \in \{1,2\}) \ と \ \cup, I = [a_1,b_1] \times [a_2,b_2] \ と おく. \ A \in GL_2(\mathbb{R})$ と $\cup, A : \mathbb{R}^2 \to \mathbb{R}^2$ を

$$A(u) = Au \quad (u \in \mathbb{R}^2)$$

によって定義する. $A(I) = \{Au \; ; \; u \in I\}$ とおき, $f : A(I) \to \mathbb{R}$ を A(I) 上の連続関数とすると,

$$\iint_{A(I)} f(x)dx = |\det A| \iint_{I} f \circ A(u)du$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定理 4.3.3 (平行移動). $a_i, b_i \in \mathbb{R}, \ a_i < b_i \ (i \in \{1, 2\}) \ と \ \cup, \ I = [a_1, b_1] \times [a_2, b_2] \ と おく. \ b \in \mathbb{R}^2 \ と \ \cup, \ T : \mathbb{R}^2 \to \mathbb{R}^2$ を

$$T(u) = u + b \quad (u \in \mathbb{R}^2)$$

によって定義する. $T(I) = \{u + b ; u \in I\}$ とおき, $f: T(I) \to \mathbb{R}$ を T(I) 上の連続関数とすると,

$$\iint_{T(I)} f(x)dx = \iint_{I} f \circ T(u)du$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

• 微分同相写像と多重積分

定義 4.3.3. $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $\varphi: U \to \mathbb{R}^2$ を U 上の C^1 級写像とする. φ が微分同相であるとは, φ が次の (i), (ii) を満たすことを言う.

- (i) φ は U から \mathbb{R}^2 への単射である.
- (ii) $\forall u \in U, \det J_{\varphi}(u) \neq 0.$

定理 4.3.4 (C^1 級変数変換公式). $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $K \subseteq U$ を \mathbb{R}^2 のコンパクトな面積確定集合, $\varphi: U \to \mathbb{R}^2$ を U 上の C^1 級微分同相写像とする. $\varphi(K) = \{\varphi(u) \; ; \; u \in K\}$ とおき, $f: \varphi(K) \to \mathbb{R}$ を $\varphi(K)$ 上の連続関数とすると,

$$\iint_{\varphi(K)} f(x)dx = \iint_{K} f \circ \varphi(u) |\det J_{\varphi}(u)| du$$

が成り立つ.

証明. 省略.

例 (極座標変換). $K\subseteq [0,\infty)\times [0,2\pi]$ を \mathbb{R}^2 (極座標) のコンパクトな面積確定集合とし, $[0,\infty)\times [0,2\pi]$ 上の関数 $\varphi:[0,\infty)\times [0,2\pi]\to \mathbb{R}^2$ を

$$\varphi(r,\theta) = (r\cos\theta, r\sin\theta) \quad (r \ge 0, \ 0 \le \theta \le 2\pi)$$

によって定義する. $\varphi(K)=\{(r\cos\theta,r\sin\theta)\;;\;(r,\theta)\in K\}$ とおき, $f:\varphi(K)\to\mathbb{R}$ を $\varphi(K)$ (直交座標) 上の連続関数とすると,

$$\iint_{\mathcal{O}(K)} f(x,y) dx dy = \iint_{K} f(r\cos\theta, r\sin\theta) r dr d\theta$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

例 (極閉領域). $0 \le \alpha, \beta \le 2\pi, \alpha < \beta, \varphi : [\alpha, \beta] \to [0, \infty)$ を $[\alpha, \beta]$ 上の非負値連続関数とし、

$$A = \{(r, \theta) \in [0, \infty) \times [0, 2\pi] : \alpha \le \theta \le \beta, \ 0 \le r \le \varphi(\theta)\}$$

とおくと、Aは面積確定であり、

$$a(A) = \frac{1}{2} \int_{\alpha}^{\beta} \varphi(\theta)^2 d\theta$$

が成り立つ.

4.4 広義多重積分

• コンパクト近似列

定義 4.4.1. $A\subseteq \mathbb{R}^2$ を \mathbb{R}^2 の部分集合とする. A の部分集合で \mathbb{R}^2 のコンパクトな面積確定集合全体の集合を

$$\mathcal{K}(A) = \{K \subseteq \mathbb{R}^2 \; ; \; K \; \text{はコンパクト}, \; \text{面積確定}, \; K \subseteq A\}$$

と書く.

命題 4.4.1. $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の部分集合とすると,

$$\bigcup_{K\in\mathcal{K}(A)}K=A$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 4.4.2. $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の部分集合とする. 次の (i), (ii) を満たす $\mathcal{K}(A)$ の集合列 $\{K_n\}_{n\in\mathbb{N}}$ を A のコンパクト近似列と言う.

- (i) $\{K_n\}_{n\in\mathbb{N}}$ は単調増加である.
- (ii) 任意の $K \in \mathcal{K}(A)$ に対し, $K \subseteq K_n$ を満たす $n \in \mathbb{N}$ が存在する.

命題 4.4.2. $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の部分集合とするとき, A のコンパクト近似列 $\{K_n\}_{n\in\mathbb{N}}$ が存在すれば,

$$\bigcup_{n\in\mathbb{N}} K_n = A$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

注意. $A \subset \mathbb{R}^2$ を \mathbb{R}^2 の部分集合とするとき, A のコンパクト近似列が存在するとは限らない.

• 非負値関数の広義多重積分

命題 4.4.3 (広義多重積分の well-definedness). $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の部分集合, $\{K_n\}_{n\in\mathbb{N}}$ を A のコンパクト 近似列とし, A 上の非負値関数 $f:A \to [0,\infty)$ が次の (i), (ii) を満たすとする.

(i) 任意の $K \in \mathcal{K}(A)$ に対して f は K で可積分である.

(ii)
$$\lim_{n\to\infty} \iint_{K_n} f(x)dx$$
 は収束する.

このとき,A の任意のコンパクト近似列 $\{L_n\}_{n\in\mathbb{N}}$ に対して $\lim_{n\to\infty}\iint_{L_n}f(x)dx$ は収束し

$$\lim_{n\to\infty}\iint_{L_n}f(x)dx=\lim_{n\to\infty}\iint_{K_n}f(x)dx$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 4.4.3. $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の部分集合, $\{K_n\}_{n\in\mathbb{N}}$ を A のコンパクト近似列, $f: A \to [0,\infty)$ を A 上の非負値関数とする. f が A で広義可積分であるとは, f が命題 4.4.3(i), (ii) を満たすことを言う. このとき,

$$\lim_{n \to \infty} \iint_{K_n} f(x)dx = \iint_A f(x)dx \left(= \iint_A f(x_1, x_2)dx_1dx_2 \right)$$

と書き, $\iint_A f(x)dx$ を f の A での**広義積分**と言う.

注意. 非負値関数の広義多重積分に対しても, 多重積分の基本性質が成り立つ.

例 (Gauss 積分). $\int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi}.$

証明. 省略 (講義の自筆ノート).

例.
$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$
, $B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$ とすると, $B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$ $(x,y>0)$. 証明. 省略 (講義の自筆ノート).

定理 4.4.1. $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の部分集合, $f: A \to [0, \infty)$ を A 上の非負値関数とすると, f が A で広義可積分であるための必要十分条件は, f が次の (i), (ii) を満たすことである.

(i) 任意の $K \in \mathcal{K}(A)$ に対して f は K で可積分である.

(ii)
$$\left\{\iint_K f(x)dx \; ; \; K \in \mathcal{K}(A) \right\}$$
 は上に有界である.

さらに、f が (i), (ii) を満たせば,

$$\sup_{K \in \mathcal{K}(A)} \iint_K f(x) dx = \iint_A f(x) dx$$

が成り立つ.

● 一般の関数の広義多重積分

命題 4.4.4. $A \subset \mathbb{R}^2$ を \mathbb{R}^2 の部分集合、 $f: A \to \mathbb{R}$ を A 上の関数とし、A 上の関数 $f^{\pm}: A \to \mathbb{R}$ を

$$f^{+}(x) = \frac{1}{2}(|f(x)| + f(x)), \quad f^{-}(x) = \frac{1}{2}(|f(x)| - f(x)) \quad (x \in A)$$

によって定義する.

- (1) $f(x) = f^+(x) f^-(x)$ $(x \in A)$.
- (2) $|f(x)| = f^+(x) + f^-(x) \ (x \in A)$.
- (3) $f^+(x) = \max\{f(x), 0\}, f^-(x) = \max\{0, -f(x)\} \ (x \in A).$
- (4) $f^+(x) \ge 0, f^-(x) \ge 0 \ (x \in A).$

証明. 省略(講義の自筆ノート).

定義 4.4.4. $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の部分集合, $f: A \to \mathbb{R}$ を A 上の関数とする. f が A で広義可積分であるとは, $f^{\pm}: A \to [0,\infty)$ が A で広義可積分であることを言う. このとき,

$$\iint_{A} f^{+}(x)dx - \iint_{A} f^{-}(x)dx = \iint_{A} f(x)dx \left(= \iint_{A} f(x_{1}, x_{2})dx_{1}dx_{2} \right)$$

と書き, $\iint_A f(x)dx$ を f の A での**広義積分**と言う.

注意. 一般の関数の広義多重積分に対しても, 多重積分の基本性質が成り立つ.

命題 4.4.5 (広義積分の三角不等式). $A\subseteq\mathbb{R}^2$ を \mathbb{R}^2 の部分集合, $f:A\to\mathbb{R}$ を A 上の関数とするとき, f が A で広義可積分ならば, |f| は A で広義可積分であり,

$$\left| \iint_A f(x) dx \right| \le \iint_A |f(x)| dx$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定理 4.4.2. $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の部分集合, $\{K_n\}_{n\in\mathbb{N}}$ を A のコンパクト近似列, $f:A\to\mathbb{R}$ を A 上の関数とすると, f が A で広義可積分であるための必要十分条件は, f が次の (i), (ii) を満たすことである.

- (i) 任意の $K \in \mathcal{K}(A)$ に対して f^{\pm} は K で可積分である.
- (ii) $\lim_{n \to \infty} \iint_{K_n} f(x) dx$ は絶対収束する. つまり, $\lim_{n \to \infty} \iint_{K_n} |f(x)| dx$ は収束する.

さらに、f が (i), (ii) を満たせば、

$$\lim_{n \to \infty} \iint_{K_n} f(x)dx = \iint_A f(x)dx$$

が成り立つ.

● 面積

定義 4.4.5. $A\subseteq \mathbb{R}^2$ を \mathbb{R}^2 の非有界集合, $\{K_n\}_{n\in\mathbb{N}}$ を \mathbb{R}^2 のコンパクト近似列とする.

(1) A が**面積確定**であるとは、任意の $n \in \mathbb{N}$ に対して $A \cap K_n$ が面積確定であることを言う. このとき、

$$a(A) = \lim_{n \to \infty} a(A \cap K_n)$$

を A の**面積**と言う.

(2) A が面積零であるとは, A が面積確定であり, a(A) = 0 であることを言う.

注意. $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の非有界な面積確定集合とすると, A の面積は

$$a(A) \in [0, \infty] = [0, \infty) \cup \{\infty\}$$

として存在する.

例. $\{K_n\}_{n\in\mathbb{N}}$ を

$$K_n = \overline{B_n(0)} \quad (n \in \mathbb{N})$$

によって定義すると, $\{K_n\}_{n\in\mathbb{N}}$ は \mathbb{R}^2 のコンパクト近似列である.

第5章 ベクトル場の微積分法

5.1 ベクトル場とその微分

• ベクトルの内積・外積

定義 5.1.1. $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の部分集合とする. $\varphi: A \to \mathbb{R}$ を A 上のスカラー場と言う.

例 (重力ポテンシャル). $(a,b) \in \mathbb{R}^2$ とする.

$$\varphi(x,y) = \log \frac{1}{\sqrt{(x-a)^2 + (y-b)^2}} \quad ((x,y) \in \mathbb{R}^2, \ (x,y) \neq (a,b))$$

によって定義される $\varphi: \mathbb{R}^2 \setminus \{(a,b)\} \to \mathbb{R}$ は $\mathbb{R}^2 \setminus \{(a,b)\}$ 上のスカラー場である.

定義 5.1.2. $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の部分集合とする. $f: A \to \mathbb{R}^2$ を A 上のベクトル場または 2 次ベクトル場と言う.

例 (重力). $(a,b) \in \mathbb{R}^2$ とする.

$$f(x,y) = -\frac{(x-a,y-b)}{(x-a)^2 + (y-b)^2} \quad ((x,y) \in \mathbb{R}^2, \ (x,y) \neq (a,b))$$

によって定義される $f: \mathbb{R}^2 \setminus \{(a,b)\} \to \mathbb{R}^2$ は $\mathbb{R}^2 \setminus \{(a,b)\}$ 上のベクトル場である.

定義 5.1.3. 任意の $x, y \in \mathbb{R}^2$ に対し,

$$x \cdot y = \sum_{i=1}^{2} x_i y_i$$

をxとyの内積またはスカラー積と言う.

命題 5.1.1. 2 次ベクトルの内積は \mathbb{R}^2 上の**対称形式**である. つまり, 次の (i)–(iv) を満たす.

- (i) $\forall x \in \mathbb{R}^2$, $(x \cdot x \ge 0) \land (x \cdot x = 0 \Leftrightarrow x = 0)$.
- (ii) $x \cdot y = y \cdot x \ (x, y \in \mathbb{R}^2).$
- (iii) $(x+y) \cdot z = x \cdot z + y \cdot z \ (x, y, z \in \mathbb{R}^2).$
- (iv) $(ax) \cdot y = a(x \cdot y) \ (a \in \mathbb{R}, \ x \in \mathbb{R}^2).$

証明. 省略 (命題 1.1.2).

命題 5.1.2. 任意の $x, y \in \mathbb{R}^2 \setminus \{0\}$ に対し、

$$x \cdot y = |x||y|\cos\theta$$

を満たす $0 \le \theta \le \pi$ が一意に存在する.

証明. 省略 (命題 1.1.6).

定義 5.1.4. 任意の $x, y \in \mathbb{R}^2$ に対し,

$$x \times y = \det(x \ y)$$

 $e_x e_y$ の外積またはベクトル積と言う.

命題 5.1.3. 2 次ベクトルの外積は \mathbb{R}^2 上の**交代形式**である. つまり, 次の (i)–(iv) を満たす.

- (i) $x \times x = 0 \ (x \in \mathbb{R}^2)$.
- (ii) $x \times y = -y \times x \ (x \in \mathbb{R}^2).$
- (iii) $(x+y) \times z = x \times z + y \times z \ (x, y, z \in \mathbb{R}^2).$
- (iv) $(ax) \times y = a(x \times y) \ (a \in \mathbb{R}, \ x, y \in \mathbb{R}^2).$

証明. 省略 (講義の自筆ノート).

命題 5.1.4. 任意の $x, y \in \mathbb{R}^2 \setminus \{0\}$ に対し,

$$|x \times y| = |x||y|\sin\theta$$

を満たす $0 \le \theta < \pi$ が一意に存在する.

• 基底の向き

定義 5.1.5. $\{x_1, x_2\} \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の基底とする.

(1) $\{x_1, x_2\}$ が**正の向き**であるとは, $\{x_1, x_2\}$ が

$$\det(x_1 \ x_2) > 0$$

を満たすことを言う.

(2) $\{x_1, x_2\}$ が**負の向き**であるとは, $\{x_1, x_2\}$ が

$$\det(x_1 \ x_2) < 0$$

を満たすことを言う.

命題 5.1.5. \mathbb{R}^2 の標準基底は正の向きである.

証明. 省略 (講義の自筆ノート).

定義 5.1.6. $\{x_1, x_2\}, \{\xi_1, \xi_2\} \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の基底とする.

(1) $\{x_1, x_2\}$ が $\{\xi_1, \xi_2\}$ と同じ向きであるとは、

$$(x_1 \ x_2) = P(\xi_1 \ \xi_2), \quad \det P > 0$$

を満たす $P \in M_2(\mathbb{R})$ が存在することを言う.

(2) $\{x_1, x_2\}$ が $\{\xi_1, \xi_2\}$ と**逆の向き**であるとは,

$$(x_1 \ x_2) = P(\xi_1 \ \xi_2), \quad \det P < 0$$

を満たす $P \in M_2(\mathbb{R})$ が存在することを言う.

命題 5.1.6. $\{x_1, x_2\} \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の基底とすると, 次の (i), (ii) は同値である.

- (i) $\{x_1, x_2\}$ は正の向きである.
- (ii) $\{x_1, x_2\}$ は \mathbb{R}^2 の標準基底と同じ向きである.

• ベクトル場の微分

定義 5.1.7. $U \subset \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $\varphi : U \to \mathbb{R}$ を U 上の全微分可能スカラー場とする.

$$\operatorname{grad}\varphi(x) = \left(\frac{\partial\varphi}{\partial x_1}(x), \frac{\partial\varphi}{\partial x_2}(x)\right) \quad (x \in U)$$

によって定義される $\operatorname{grad}\varphi:U\to\mathbb{R}^2$ を φ の**勾配** (gradient) と言う.

例 (重力ポテンシャル). $(a,b) \in \mathbb{R}^2$ とする.

$$\varphi(x,y) = \log \frac{1}{\sqrt{(x-a)^2 + (y-b)^2}} \quad ((x,y) \in \mathbb{R}^2, \ (x,y) \neq (a,b))$$

によって定義される $\varphi: \mathbb{R}^2 \setminus \{(a,b)\} \to \mathbb{R}$ は $\mathbb{R}^2 \setminus \{(a,b)\}$ 上のスカラー場であり、

$$\operatorname{grad}\varphi(x,y) = -\frac{(x-a,y-b)}{(x-a)^2 + (y-b)^2} \quad ((x,y) \in \mathbb{R}^2, \ (x,y) \neq (a,b))$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 5.1.8. $U \subset \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}^2$ を U 上の全微分可能ベクトル場とする.

$$\operatorname{rot} f(x) = \frac{\partial f_2}{\partial x_1}(x) - \frac{\partial f_1}{\partial x_2}(x) \quad (x \in U)$$

によって定義される rot $f: U \to \mathbb{R}$ を f の回転 (rotation) と言う.

例 (円運動). $\omega > 0$ とする.

$$f(x,y) = (-\omega y, \omega x) \quad ((x,y) \in \mathbb{R}^2)$$

によって定義される $f: \mathbb{R}^2 \to \mathbb{R}^2$ は \mathbb{R}^2 上のベクトル場であり、

$$\operatorname{rot} f(x, y) = 2\omega \quad ((x, y) \in \mathbb{R}^2)$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 5.1.9. $U \subset \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}^2$ を U 上の全微分可能ベクトル場とする.

$$\operatorname{div} f(x) = \frac{\partial f_1}{\partial x_1}(x) + \frac{\partial f_2}{\partial x_2}(x) \quad (x \in U)$$

によって定義される $\operatorname{div} f: U \to \mathbb{R}$ を f の発散 (divergence) と言う.

例 (重力). $(a,b) \in \mathbb{R}^2$ とする.

$$f(x,y) = -\frac{(x-a,y-b)}{(x-a)^2 + (y-b)^2} \quad ((x,y) \in \mathbb{R}^2, \ (x,y) \neq (a,b))$$

によって定義される $f: \mathbb{R}^2 \setminus \{(a,b)\} \to \mathbb{R}^2$ は $\mathbb{R}^2 \setminus \{(a,b)\}$ 上のベクトル場であり、

$$\operatorname{div} f(x, y) = 0 \quad ((x, y) \in \mathbb{R}^2, \ (x, y) \neq (a, b))$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 5.1.10.

$$\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}$$

を Laplace 作用素と言う.

命題 5.1.7. $U\subseteq\mathbb{R}^2$ を \mathbb{R}^2 の開集合, $\varphi:U\to\mathbb{R}$ を U 上の C^2 級スカラー場とする.

- (1) $\operatorname{rot}(\operatorname{grad}\varphi)(x) = 0 \ (x \in U).$
- (2) $\operatorname{div}(\operatorname{grad}\varphi)(x) = \Delta\varphi(x) \ (x \in U).$

証明. 省略 (講義の自筆ノート).

例 (重力ポテンシャル). $(a,b) \in \mathbb{R}^2$ とする.

$$\varphi(x,y) = \log \frac{1}{\sqrt{(x-a)^2 + (y-b)^2}} \quad ((x,y) \in \mathbb{R}^2, \ (x,y) \neq (a,b))$$

によって定義される $\varphi: \mathbb{R}^2 \setminus \{(a,b)\} \to \mathbb{R}$ は $\mathbb{R}^2 \setminus \{(a,b)\}$ 上のスカラー場であり,

$$-\Delta\varphi(x,y) = 0 \quad ((x,y) \in \mathbb{R}^2, \ (x,y) \neq (a,b))$$

が成り立つ.

5.2 線積分とその基本性質

\bullet C^1 級パラメータ曲線

定義 5.2.1. $a, b \in \mathbb{R}, a < b, x : [a, b] \to \mathbb{R}^2$ を [a, b] 上の C^1 級関数とする.

- (1) $x:[a,b] \to \mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級パラメータ曲線と言う.
- (2) $C = \{x(t) ; a \le t \le b\}$ を x の跡と言う.

定義 5.2.2. $k \in \{0,1\}$, $a_k, b_k \in \mathbb{R}$, $a_k < b_k$, $x_k : [a_k, b_k] \to \mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級パラメータ曲線とする. x_0 が x_1 に**向きを込めて** C^1 級同値であるとは, 次の (i), (ii) を満たす $[a_0, b_0]$ 上の C^1 級関数 $\varphi : [a_0, b_0] \to [a_1, b_1]$ が存在することを言う.

- (i) $\varphi(a_0) = a_1, \ \varphi(b_0) = b_1, \ \varphi'(t) > 0 \ (a_0 \le t \le b_0).$
- (ii) $x_0(t) = (x_1 \circ \varphi)(t) \ (a_0 \le t \le b_0).$

このとき, $x_0 \sim x_1$ と書く.

命題 5.2.1. \sim は \mathbb{R}^2 上の向き付けられた C^1 級パラメータ曲線の同値関係である. つまり, 次の (i)–(iii) を満たす.

- (i) (反射律) $x \sim x$.
- (ii) (対称律) $x_0 \sim x_1 \Rightarrow x_1 \sim x_0$.
- (iii) (推移律) $x_0 \sim x_1, x_1 \sim x_2 \Rightarrow x_0 \sim x_2$.

証明. 省略 (微分積分学 II).

定義 5.2.3. $a, b \in \mathbb{R}, a < b, x : [a, b] \to \mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級パラメータ曲線とする.

- (1) $[x] = \{\xi ; x \sim \xi\}$ を \mathbb{R}^2 上の向き付けられた C^1 級曲線と言う.
- (2) $C = \{x(t) ; a \le t \le b\}$ を [x] の跡と言う.

\bullet C^1 級パラメータ曲線の長さ

命題 5.2.2 (曲線の長さの well-definedness). $a,b\in\mathbb{R},\ a< b,\ x:[a,b]\to\mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級パラメータ曲線とすると, 任意の $\xi\in[x],\ c,d\in\mathbb{R},\ c< d,\ \xi:[c,d]\to\mathbb{R}^2$ に対して

$$\int_{a}^{b} |x'(t)|dt = \int_{c}^{d} |\xi'(u)|du$$

が成り立つ.

証明. 省略 (微分積分学 II).

定義 5.2.4. $a,b\in\mathbb{R},\ a< b,\ x:[a,b]\to\mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級パラメータ曲線とし, $C=\{x(t)\ ;\ a\leq t\leq b\}$ とおく.

$$l(C) = \int_{a}^{b} |x'(t)| dt$$

を C の**長さ**と言う.

注意 (命題 5.2.2). \mathbb{R}^2 上の向き付けられた C^1 級曲線の長さは, パラメータの選択に依存しない.

● 逆向き曲線, 閉曲線

定義 5.2.5. $a, b \in \mathbb{R}, a < b, x : [a, b] \to \mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級パラメータ曲線とする.

(1)

$$\hat{x}(t) = x(-t) \quad (-b \le t \le -a)$$

によって定義される $\hat{x}:[-b,-a]\to\mathbb{R}^2$ を x の逆向きパラメータ曲線と言い, $[\hat{x}]$ を [x] の逆向き曲線と言う.

(2) $C = \{x(t) ; a \le t \le b\}$ とおくとき, $-C = \{\hat{x}(t) ; -b \le t \le -a\}$ を $[\hat{x}]$ の跡と言う.

定義 5.2.6. $a, b \in \mathbb{R}, a < b, x : [a, b] \to \mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級パラメータ曲線とする.

- (1) x(a) = x(b) のとき, [x] を \mathbb{R}^2 上の向き付けられた C^1 級閉曲線と言う.
- (2) x(a)=x(b), かつ $x:[a,b)\to\mathbb{R}^2$ が [a,b) から \mathbb{R}^2 への単射のとき, [x] を \mathbb{R}^2 上の向き付けられた C^1 級単純閉曲線と言う.

• チェイン, サイクル

定義 5.2.7. $n\in\mathbb{N},\ n\geq 1,\ C_1,\cdots,C_n\subseteq\mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級曲線の跡とする. 形式的な和

$$C_1 + \cdots + C_n$$

を \mathbb{R}^2 上の**向き付けられた** C^1 級チェインの跡と言う. また, 二つのチェインが**等しい**とは, 次の (i)–(iii) を有限回施すことによって一方から他方へ移ることを言う.

- (i) 曲線の順序を入れ換える.
- (ii) 1曲線を2曲線に分割する. 逆に、一方の終点と他方の始点が一致する2曲線を1曲線に結合する.
- (iii) 向きが互いに逆の2曲線を付け加える. 逆に, 向きが互いに逆の2曲線を取り除く.

定義 5.2.8. $n \in \mathbb{N}, n \ge 1, C_1, \cdots, C_n \subseteq \mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級閉曲線の跡とする. 形式的な和

$$C_1 + \cdots + C_n$$

を \mathbb{R}^2 上の**向き付けられた** C^1 級サイクルの跡と言う.

線積分I

命題 5.2.3 (線積分の well-definedness). $a,b \in \mathbb{R},\ a < b,\ x:[a,b] \to \mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級パラメータ曲線とし, $C=\{x(t)\ ;\ a \leq t \leq b\}$ とおく. $f:C \to \mathbb{R}$ を C 上の連続スカラー場とすると, 任意の $\xi \in [x],\ c,d \in \mathbb{R},\ c < d,\ \xi:[c,d] \to \mathbb{R}^2$ に対して

$$\int_{a}^{b} f(x(t))|x'(t)|dt = \int_{c}^{d} f(\xi(u))|\xi'(u)|du$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 5.2.9. $a,b \in \mathbb{R}, \ a < b, \ x : [a,b] \to \mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級パラメータ曲線とし、 $C = \{x(t) \ ; \ a \le t \le b\}$ とおく. $f: C \to \mathbb{R}$ を C 上の連続スカラー場とするとき、

$$\int_{C} f(x)d\sigma = \int_{a}^{b} f(x(t))|x'(t)|dt$$

を f の C での線積分と言う.

注意 (命題 5.2.3). \mathbb{R}^2 上の向き付けられた C^1 級曲線での線積分は、パラメータの選択に依存しない.

例. r > 0 とし, $C = \{(x, y) \in \mathbb{R}^2 ; x^2 + y^2 = r^2\}$ とおくと,

$$\int_C x^2 d\sigma = \pi r^3$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 5.2.10. $n \in \mathbb{N}, n \geq 1, C = C_1 + \cdots + C_n \subseteq \mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級チェイン, $f: C \to \mathbb{R}$ を C 上の連続スカラー場とする.

$$\int_{C} f(x)d\sigma = \int_{C_{1}} f(x)d\sigma + \dots + \int_{C_{n}} f(x)d\sigma$$

を f の C での線積分と言う.

注意 (命題 5.2.3). \mathbb{R}^2 上の向き付けられた C^1 級チェインでの線積分は、パラメータの選択に依存しない.

● 線積分 II

命題 5.2.4 (線積分の well-definedness). $a,b \in \mathbb{R},\ a < b,\ x:[a,b] \to \mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級パラメータ曲線とし, $C = \{x(t) \ ; \ a \leq t \leq b\}$ とおく. $f:C \to \mathbb{R}^2$ を C 上の連続ベクトル場とすると, 任意の $\xi \in [x],\ c,d \in \mathbb{R},\ c < d,\ \xi:[c,d] \to \mathbb{R}^2$ に対して

$$\int_{a}^{b} f(x(t)) \cdot x'(t)dt = \int_{c}^{d} f(\xi(u)) \cdot \xi'(u)du$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 5.2.11. $a, b \in \mathbb{R}, \ a < b, \ x : [a, b] \to \mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級パラメータ曲線とし、 $C = \{x(t) \ ; \ a \le t \le b\}$ とおく. $f: C \to \mathbb{R}^2$ を C 上の連続ベクトル場とするとき、

$$\int_C f(x) \cdot dx \left(= \int_C f(x_1, x_2) \cdot (dx_1, dx_2) \right) = \int_a^b f(x(t)) \cdot x'(t) dt$$

をfのCでの線積分と言う.

注意 (命題 5.2.4). \mathbb{R}^2 上の向き付けられた C^1 級曲線での線積分は、パラメータの選択に依存しない.

例. r > 0 とし, $C = \{(x, y) \in \mathbb{R}^2 ; x^2 + y^2 = r^2\}$ とおくと,

$$\int_C (-y, x) \cdot (dx, dy) = 2\pi r^2$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 5.2.12. $n \in \mathbb{N}, n \geq 1, C = C_1 + \cdots + C_n \subseteq \mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級チェイン, $f: C \to \mathbb{R}^2$ を C 上の連続ベクトル場とする.

$$\int_{C} f(x) \cdot dx = \int_{C_{1}} f(x) \cdot dx + \dots + \int_{C_{n}} f(x) \cdot dx$$

をfのCでの線積分と言う.

注意 (命題 5.2.4). \mathbb{R}^2 上の向き付けられた C^1 級チェインでの線積分は、パラメータの選択に依存しない.

線積分III

命題 5.2.5 (線積分の well-definedness). $a,b \in \mathbb{R},\ a < b,\ x:[a,b] \to \mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級パラメータ曲線とし, $C=\{x(t)\ ;\ a \leq t \leq b\}$ とおく. $f:C \to \mathbb{R}$ を C 上の連続スカラー場とすると, 任意の $\xi \in [x],\ c,d \in \mathbb{R},\ c < d,\ \xi:[c,d] \to \mathbb{R}^2$ に対して

$$\int_{a}^{b} f(x(t))x'_{i}(t)dt = \int_{c}^{d} f(\xi(u))\xi'_{i}(u)du \quad (i \in \{1, 2\})$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 5.2.13. $a, b \in \mathbb{R}, \ a < b, \ x : [a, b] \to \mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級パラメータ曲線とし、 $C = \{x(t) ; \ a \le t \le b\}$ とおく. $f: C \to \mathbb{R}$ を C 上の連続スカラー場とするとき、

$$\int_{C} f(x)dx_{i} = \int_{a}^{b} f(x(t))x'_{i}(t)dt \quad (i \in \{1, 2\})$$

を f の C での線積分と言う.

注意 (命題 5.2.5). \mathbb{R}^2 上の向き付けられた C^1 級曲線での線積分は、パラメータの選択に依存しない.

例. r > 0 とし, $C = \{(x, y) \in \mathbb{R}^2 ; x^2 + y^2 = r^2\}$ とおくと,

$$\int_C (-y)dx = \pi r^2, \quad \int_C xdy = \pi r^2$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 5.2.14. $n \in \mathbb{N}, n \geq 1, C = C_1 + \cdots + C_n \subseteq \mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級チェイン, $f: C \to \mathbb{R}$ を C 上の連続スカラー場とする.

$$\int_C f(x)dx_i = \int_{C_1} f(x)dx_i + \dots + \int_{C_n} f(x)dx_i \quad (i \in \{1, 2\})$$

を f の C での線積分と言う.

注意 (命題 5.2.5). \mathbb{R}^2 上の向き付けられた C^1 級チェインでの線積分は、パラメータの選択に依存しない.

• 線積分の基本性質

命題 5.2.6. $a,b\in\mathbb{R},\ a< b,\ x:[a,b]\to\mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級パラメータ曲線とし, $C=\{x(t)\ ;\ a\leq t\leq b\}$ とおく.

(1) $f, g: C \to \mathbb{R}^2$ を C 上の連続ベクトル場とすると,

$$\int_C (f(x) + g(x)) \cdot dx = \int_C f(x) \cdot dx + \int_C g(x) \cdot dx$$

が成り立つ.

(2) $f: C \to \mathbb{R}^2$ を C 上の連続ベクトル場, $c \in \mathbb{R}$ とすると,

$$\int_C (cf(x)) \cdot dx = c \int_C f(x) \cdot dx$$

が成り立つ.

(3) $f: C \to \mathbb{R}^2$ を C 上の連続ベクトル場とすると,

$$\int_{-C} f(x) \cdot dx = -\int_{C} f(x) \cdot dx$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 5.2.7. $a,b\in\mathbb{R},\ a< b,\ x:[a,b]\to\mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級パラメータ曲線とし, $C=\{x(t)\ ;\ a\leq t\leq b\}$ とおく.

(1) (線積分の三角不等式) $f: C \to \mathbb{R}^2$ を C 上の連続ベクトル場とすると,

$$\left| \int_{C} f(x) \cdot dx \right| \leq \int_{C} |f(x)| d\sigma$$

が成り立つ.

(2) $f: C \to \mathbb{R}^2$ を C 上の連続ベクトル場とすると,

$$\int_C f(x) \cdot dx = \sum_{i=1}^2 \int_C f_i(x) dx_i$$

が成り立つ.

5.3 Green の定理, Gauss の定理

\bullet 区分的 C^1 級領域

定義 5.3.1. $a,b \in \mathbb{R}, \ a < b, \ x : [a,b] \to \mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級パラメータ曲線とし、 $C = \{x(t) \ ; \ a \le t \le b\}$ とおく.

(1)

$$\tau(x(t)) = \frac{x'(t)}{|x'(t)|} \quad (a \le t \le b)$$

によって定義される $\tau: C \to \mathbb{R}^2$ を C の単位接線と言う.

$$(2) J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} とおくとき,$$

$$\nu(x(t)) = -J\tau(x(t)) \quad (a \le t \le b)$$

によって定義される $\nu: C \to \mathbb{R}^2$ を C の正の向きの単位法線と言う.

命題 5.3.1. $a,b\in\mathbb{R},\ a< b,\ x:[a,b]\to\mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級パラメータ曲線とし, $C=\{x(t)\ ;\ a\leq t\leq b\}$ とおく.

- (1) $\nu(x(t)) \cdot \tau(x(t)) = 0 \ (a \le t \le b).$
- (2) $\det(\nu(x(t)) \ \tau(x(t))) = 1 \ (a \le t \le b).$

証明. 省略 (講義の自筆ノート).

定義 5.3.2. $a,b \in \mathbb{R}, \ a < b, \ \varphi, \psi : [a,b] \to \mathbb{R}$ を [a,b] 上の C^1 級関数で、 $\varphi \leq \psi$ を満たすものとし、 $C_1 = \{(x_1, \varphi(x_1)) \ ; \ a \leq x_1 \leq b\}, \ C_2 = \{(b, x_2) \ ; \ \varphi(b) \leq x_2 \leq \psi(b)\}, \ C_3 = \{(x_1, \psi(x_1)) \ ; \ a \leq x_1 \leq b\}, \ C_4 = \{(a, x_2) \ ; \ \varphi(a) \leq x_2 \leq \psi(a)\}$ とおく.

- (1) $D = \{(x_1, x_2) \in \mathbb{R}^2 ; a < x_1 < b, \varphi(x_1) < x_2 < \psi(x_1) \}$ を \mathbb{R}^2 の区分的 C^1 級縦線領域と言う.
- (2) $\partial D = C_1 + C_2 C_3 C_4$ を D の正の向きの境界と言う.
- (3) $\overline{D}(=D\cup\partial D)$ を \mathbb{R}^2 の区分的 C^1 級縦線閉領域と言う.

定義 5.3.3. $D \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の有界領域とする.

- (1) D が**区分的** C^1 級であるとは, ∂D が \mathbb{R}^2 上の向き付けられた区分的 C^1 級チェインであることを言う.
- (2) ∂D が**正の向き**であるとは, $\nu: \partial D \to \mathbb{R}^2$ を ∂D の外向きの単位法線, $\tau: \partial D \to \mathbb{R}^2$ を ∂D の単位接線とするとき, $\{\nu, \tau\}$ が \mathbb{R}^2 の正の向きの (正規直交) 基底となることを言う.

命題 5.3.2. $D \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の区分的 C^1 級有界領域とすると, 次の (i), (ii) を満たす有限個の \mathbb{R}^2 の区分的 C^1 級縦線領域 $D_1, \cdots, D_n \subseteq \mathbb{R}^2$ が存在する.

- (i) $\overline{D_1} \cup \cdots \cup \overline{D_n} = \overline{D}$.
- (ii) $\forall k, l \in \{1, \dots, n\}, (k \neq l \Rightarrow D_k \cap D_l = \emptyset).$

● Green の定理

補題 5.3.1. $D \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の区分的 C^1 級有界領域, $f : \overline{D} \to \mathbb{R}$ を \overline{D} 上の C^1 級スカラー場とする.

(1)
$$\iint_D \frac{\partial f}{\partial x_2}(x_1, x_2) dx_1 dx_2 = -\int_{\partial D} f(x_1, x_2) dx_1.$$

(2)
$$\iint_D \frac{\partial f}{\partial x_1}(x_1, x_2) dx_1 dx_2 = \int_{\partial D} f(x_1, x_2) dx_2.$$

証明. 省略 (講義の自筆ノート).

定理 5.3.1 (Green の定理). $D \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の区分的 C^1 級有界領域, $f: \overline{D} \to \mathbb{R}^2$ を \overline{D} 上の C^1 級ベクトル場とすると.

$$\iint_{D} \operatorname{rot} f(x) dx = \int_{\partial D} f(x) \cdot dx$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定理 5.3.2. $J=\begin{pmatrix}0&-1\\1&0\end{pmatrix}$ とおき, $D\subseteq\mathbb{R}^2$ を \mathbb{R}^2 の区分的 C^1 級有界領域とすると,

$$a(D) = \frac{1}{2} \int_{\partial D} Jx \cdot dx$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

例 (楕円領域). a,b>0 とし、 $D=\left\{(x,y)\in\mathbb{R}^2\; ;\; \left(\frac{x}{a}\right)^2+\left(\frac{y}{b}\right)^2<1\right\}$ とおくと、 $a(D)=\pi ab$

が成り立つ.

● Gauss の定理

補題 5.3.2 (転置). $a,b\in\mathbb{R},\ a< b,\ x:[a,b]\to\mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級パラメータ曲線とし、 $C=\{x(t)\ ;\ a\leq t\leq b\}$ とおく. $J=\begin{pmatrix}0&-1\\1&0\end{pmatrix}$ とおき, $f:C\to\mathbb{R}^2$ を C 上の連続ベクトル場とすると、

$$\int_{C} Jf(x) \cdot dx = \int_{C} f \cdot \nu(x) d\sigma$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定理 5.3.3 (Gauss の定理). $D \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の区分的 C^1 級有界領域, $f: \overline{D} \to \mathbb{R}^2$ を \overline{D} 上の C^1 級ベクトル場とすると.

$$\iint_{D} \operatorname{div} f(x) dx = \int_{\partial D} f \cdot \nu(x) d\sigma$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定理 5.3.4 (Green の公式). $D \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の区分的 C^1 級有界領域, $f: \overline{D} \to \mathbb{R}$ を \overline{D} 上の C^1 級スカラー場, $g: \overline{D} \to \mathbb{R}$ を \overline{D} 上の C^2 級スカラー場とすると,

$$\iint_{D} \operatorname{grad} f(x) \cdot \operatorname{grad} g(x) dx = \int_{\partial D} f(x) \frac{\partial g}{\partial \nu}(x) d\sigma - \iint_{D} f(x) \Delta g(x) dx$$

が成り立つ.

5.4 スカラー・ポテンシャル

• スカラー・ポテンシャルの存在条件

定理 5.4.1. $D \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の領域, $f: D \to \mathbb{R}^2$ を D 上の連続ベクトル場とすると, 次の (i)–(iii) は互いに同値である.

- (i) (スカラー・ポテンシャル) $\operatorname{grad}\varphi=f$ を満たす D 上の C^1 級スカラー場 $\varphi:D\to\mathbb{R}$ が存在する.
- (ii) D 上のあるスカラー場 $\varphi:D\to\mathbb{R}$ が存在し、任意の $\alpha,\beta\in D$ と、 α と β を結ぶ D 上の任意の向き付けられた区分的 C^1 級曲線 $C\subseteq D$ に対して

$$\int_C f(x) \cdot dx = \varphi(\beta) - \varphi(\alpha)$$

が成り立つ.

(iii) D 上の任意の向き付けられた区分的 C^1 級閉曲線 $C \subseteq D$ に対して

$$\int_C f(x) \cdot dx = 0$$

が成り立つ.

● 曲線のホモトピー

定義 5.4.1. $D \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の領域, $a,b \in \mathbb{R}$, $a < b, k \in \{0,1\}$, $x_k : [a,b] \to D$ を D 上の向き付けられた区分的 C^1 級パラメータ曲線とし, $C_k = \{x_k(t) \; ; \; a \leq t \leq b\}$ とおく. $x_0(a) = x_1(a), x_0(b) = x_1(b)$ のとき, C_0 が C_1 に D でホモトピー同値またはホモトープであるとは, 次の (i), (ii) を満たす $[0,1] \times [a,b]$ 上の連続関数 $\varphi : [0,1] \times [a,b] \to D$ が存在することを言う.

- (i) $\varphi(s,a) = x_0(a) = x_1(a), \ \varphi(s,b) = x_0(b) = x_1(b) \ (0 \le s \le 1).$
- (ii) $\varphi(0,t) = x_0(t), \ \varphi(1,t) = x_1(t) \ (a \le t \le b).$

このとき, $C_0 \sim C_1 \pmod{D}$ と書く.

命題 5.4.1. $D \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の領域とすると, \sim は D 上の向き付けられた区分的 C^1 級曲線の同値関係である. つまり, 次の (i)–(iii) を満たす.

- (i) (反射律) $C \sim C \pmod{D}$.
- (ii) (対称律) $C_0 \sim C_1 \pmod{D} \Rightarrow C_1 \sim C_0 \pmod{D}$.
- (iii) (推移律) $C_0 \sim C_1$, $C_1 \sim C_2 \pmod{D} \Rightarrow C_0 \sim C_2 \pmod{D}$.

証明. 省略(講義の自筆ノート).

定義 5.4.2. $D \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の領域とする.

(1) $D \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の領域, $a,b \in \mathbb{R}$, a < b, $x : [a,b] \to D$ を D 上の向き付けられた区分的 C^1 級 パラメータ曲線とし, $C = \{x(t) \; ; \; a \leq t \leq b\}$ とおく. x(a) = x(b) のとき, C が 0 に D で ホモトピー同値またはホモトープであるとは, 次の (i), (ii) を満たす $[0,1] \times [a,b]$ 上の連続関数 $\varphi : [0,1] \times [a,b] \to D$ が存在することを言う.

- (i) $\varphi(s, a) = x(a) = x(b) = \varphi(s, b) \ (0 \le s \le 1).$
- (ii) $\varphi(0,t) = x(t), \ \varphi(1,t) = x(a) = x(b) \ (a \le t \le b).$

このとき, $C \sim 0 \pmod{D}$ と書く.

(2) D が \mathbb{R}^2 のホモトープな単連結領域であるとは, D 上の任意の向き付けられた区分的 C^1 級閉曲線が 0 に D でホモトピー同値であることを言う.

● Poincaré の補題

定理 5.4.2 (Poincaré の補題). $D \subseteq \mathbb{R}^2$ を \mathbb{R}^2 のホモトープな単連結領域, $f: D \to \mathbb{R}^2$ を D 上の C^1 級ベクトル場とすると, 次の (i)–(iii) は互いに同値である.

- (i) (スカラー・ポテンシャル) $\operatorname{grad}\varphi = f$ を満たす $D \perp O$ C^2 級スカラー場 $\varphi: D \to \mathbb{R}$ が存在する.
- (ii) rot f = 0.
- (iii) D 上の任意の向き付けられた区分的 C^1 級閉曲線 $C \subseteq D$ に対して

$$\int_C f(x) \cdot dx = 0$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

例. \mathbb{R}^2 上のベクトル場 $f: \mathbb{R}^2 \to \mathbb{R}^2$ を

$$f(x,y) = (x,y) \quad ((x,y) \in \mathbb{R}^2)$$

によって定義すると, f のスカラー・ポテンシャルが存在し, その一つ $\varphi: \mathbb{R}^2 \to \mathbb{R}$ は

$$\varphi(x,y) = \frac{1}{2}(x^2 + y^2) \quad ((x,y) \in \mathbb{R}^2)$$

である.

証明. 省略 (講義の自筆ノート).

例. \mathbb{R}^2 上のベクトル場 $f: \mathbb{R}^2 \to \mathbb{R}^2$ を

$$f(x,y) = (-y,x) \quad ((x,y) \in \mathbb{R}^2)$$

によって定義すると、fのスカラー・ポテンシャルは存在しない.

関連図書

- [1] 齋藤 正彦, 微分積分学, 東京図書, 2006年.
- [2] 杉浦 光夫, 解析入門 I(基礎数学), 東京大学出版会, 1980年.
- [3] 杉浦 光夫, 解析入門 II(基礎数学), 東京大学出版会, 1985年.