微分積分学III 演習問題

柿澤 亮平

島根大学学術研究院 教育学系 数学科教育専攻

目 次

第1章	ベクトル空間	1
1.1	ベクトル空間上の内積	1
1.2		3
1.3		7
第2章	多変数関数の微分法 1	0
2.1	関数の極限 1	10
2.2	連続関数, 一様連続関数, 半連続関数 1	ί1
2.3	全導関数と接平面	14
第3章	Taylor の定理, 陰関数定理 1	9
3.1	高階偏導関数	19
3.2	Taylor の定理と関数の極大・極小	22
3.3	陰関数定理と関数の条件付き極値 2	24
第4章	多変数関数の積分法 2	28
4.1	有界閉区間での多重積分 2	28
4.2	一般の集合での多重積分	30
4.3	変数変換公式	34
4.4		36
第5章	ベクトル場の微積分法 4	10
5.1	ベクトル場とその微分 4	10
5.2	線積分とその基本性質 4	41
5.3	Green の定理, Gauss の定理	15
5.4	スカラー・ポテンシャル	

第1章 ベクトル空間

1.1 ベクトル空間上の内積

• ベクトル空間

1 2次ベクトルの乗法を

$$xy = (x_1y_1 - x_2y_2, x_1y_2 + x_2y_1) \quad (x, y \in \mathbb{R}^2)$$

によって定義すると, $\mathbb{R}^2\setminus\{0\}$ は 2 次ベクトルの乗法について**可換群**である. つまり, 次の (i)–(iv) を満たすことを証明せよ.

- (i) $(xy)z = x(yz) \ (x, y, z \in \mathbb{R}^2).$
- (ii) $\exists ! 1 \in \mathbb{R}^2 \setminus \{0\}, \, \forall x \in \mathbb{R}^2, \, x1 = x = 1x.$
- (iii) $\forall x \in \mathbb{R}^2 \setminus \{0\}, \exists ! x^{-1} \in \mathbb{R}^2 \setminus \{0\}, xx^{-1} = 1 = x^{-1}x.$
- (iv) $xy = yx \ (x, y \in \mathbb{R}^2).$
- 2 2次ベクトルの大小相等を

$$x \le y \Leftrightarrow (x_1 \le y_1) \land (x_2 \le y_2) \quad (x, y \in \mathbb{R}^2)$$

によって定義すると, \mathbb{R}^2 は 2 次ベクトルの大小相等について**順序集合**である. つまり, 次の (i)–(iii) を満たすことを証明せよ.

- (i) $\forall x \in \mathbb{R}^2, x \leq x$.
- (ii) $\forall x, y \in \mathbb{R}^2$, $((x \le y) \land (x \ge y) \Rightarrow x = y)$.
- (iii) $\forall x, y, z \in \mathbb{R}^2$, $((x \le y) \land (y \le z) \Rightarrow x \le z)$.

③
$$\mathcal{C} = \left\{ \begin{pmatrix} x_1 & -x_2 \\ x_2 & x_1 \end{pmatrix} \; ; \; x_1, x_2 \in \mathbb{R} \right\}$$
 とおくとき、次のことを証明せよ.

- (1) C は 2 次正方行列の加法・スカラー乗法について線型空間である.
- (2) \mathcal{C} 上の関数 $f: \mathcal{C} \to \mathbb{R}^2$ を

$$f(X) = (x_1, x_2)$$
 $\left(X = \begin{pmatrix} x_1 & -x_2 \\ x_2 & x_1 \end{pmatrix} \in \mathcal{C}\right)$

によって定義すると、f はC から \mathbb{R}^2 への線型空間の同型写像である、

● ベクトル空間上の内積・ノルム・距離

- [4] (指定演習問題 1) $\{e_1, e_2\} \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の標準基底, $(\mathbb{R}^2)^*$ を \mathbb{R}^2 から \mathbb{R} への線型写像全体の集合とするとき, 次のことを証明せよ.
 - (1) 任意の $f \in (\mathbb{R}^2)^*$ に対して b(f) を

$$b(f) = (f(e_1), f(e_2))$$

によって定義すると,

$$f(x) = \langle x, b(f) \rangle \quad (x \in \mathbb{R}^2)$$

が成り立つ.

(2) 任意の $f \in (\mathbb{R}^2)^*$ に対して ||f|| を

$$||f|| = \sup \left\{ \frac{|f(x)|}{|x|} \; ; \; x \in \mathbb{R}^2, \; x \neq 0 \right\}$$

によって定義すると,

$$||f|| = |b(f)|$$

が成り立つ.

5 (中線定理) 次の等式

$$|x+y|^2 + |x-y|^2 = 2(|x|^2 + |y|^2)$$
 $(x, y \in \mathbb{R}^2)$

が成り立つことを証明せよ.

|6| 次の不等式

$$||x| - |y|| \le |x - y| \quad (x, y \in \mathbb{R}^2)$$

が成り立つことを証明せよ.

7 任意の $x \in \mathbb{R}^2$ に対して $|x|_1$ を

$$|x|_1 = |x_1| + |x_2|$$

によって定義すると, $(\mathbb{R}^2, |*|_1)$ はノルム空間である. つまり, 次の (i)–(iii) を満たすことを証明 せよ.

- (i) $\forall x \in \mathbb{R}^2$, $(|x|_1 \ge 0) \land (|x|_1 = 0 \Leftrightarrow x = 0)$.
- (ii) (三角不等式) $|x+y|_1 \le |x|_1 + |y|_1$ $(x, y \in \mathbb{R}^2)$.
- (iii) $|ax|_1 = |a||x|_1 \ (a \in \mathbb{R}, \ x \in \mathbb{R}^2).$
- $\boxed{8}$ 任意の $x \in \mathbb{R}^2$ に対して $|x|_{\infty}$ を

$$|x|_{\infty} = \max\{|x_1|, |x_2|\}$$

によって定義すると, $(\mathbb{R}^2, |*|_{\infty})$ はノルム空間である. つまり, 次の (i)–(iii) を満たすことを証明 せよ.

- (i) $\forall x \in \mathbb{R}^2$, $(|x|_{\infty} \ge 0) \land (|x|_{\infty} = 0 \Leftrightarrow x = 0)$.
- (ii) (三角不等式) $|x+y|_{\infty} \le |x|_{\infty} + |y|_{\infty} \ (x, y \in \mathbb{R}^2)$.
- (iii) $|ax|_{\infty} = |a||x|_{\infty} \ (a \in \mathbb{R}, \ x \in \mathbb{R}^2).$

1.2 ベクトル空間上の位相

● ベクトル空間の開集合・閉集合

 $\boxed{1}$ 任意の $x \in \mathbb{R}^2$ に対して $|x|_1$ を

$$|x|_1 = |x_1| + |x_2|$$

によって定義する. $a \in \mathbb{R}^2$, r > 0 とするとき, 次の \mathbb{R}^2 の部分集合

$$A = \{ x \in \mathbb{R}^2 \; ; \; |x - a|_1 < r \}$$

の概形を図示せよ.

2 任意の $x \in \mathbb{R}^2$ に対して $|x|_{\infty}$ を

$$|x|_{\infty} = \max\{|x_1|, |x_2|\}$$

によって定義する. $a \in \mathbb{R}^2$, r > 0 とするとき, 次の \mathbb{R}^2 の部分集合

$$A = \{ x \in \mathbb{R}^2 ; |x - a|_{\infty} < r \}$$

の概形を図示せよ.

 $\boxed{3}$ $d \in \{1,2\}$ とする. 任意の $A \in \mathcal{P}(\mathbb{R}^d)$ に対して

$$A^i = \{ x \in \mathbb{R}^d ; \exists r > 0, B_r(x) \subseteq A \}$$

とおくとき、 $*^i$ が次の(i)–(iv)を満たすことを証明せよ.

- (i) $(\mathbb{R}^d)^i = \mathbb{R}^d$.
- (ii) $A^i \subseteq A \ (A \in \mathcal{P}(\mathbb{R}^d)).$
- (iii) $(A \cap B)^i = A^i \cap B^i \ (A, B \in \mathcal{P}(\mathbb{R}^d)).$
- (iv) $(A^i)^i = A^i \ (A \in \mathcal{P}(\mathbb{R}^d)).$
- $\boxed{4}$ (Kuratowski の公理) $d \in \{1,2\}$ とする. 任意の $A \in \mathcal{P}(\mathbb{R}^d)$ に対して

$$\overline{A} = \{ x \in \mathbb{R}^d ; \ \forall r > 0, \ B_r(x) \cap A \neq \emptyset \}$$

とおくとき, * が次の (i)-(iv) を満たすことを証明せよ.

- (i) $\overline{\emptyset} = \emptyset$.
- (ii) $A \subseteq \overline{A} \ (A \in \mathcal{P}(\mathbb{R}^d)).$
- (iii) $\overline{A \cup B} = \overline{A} \cup \overline{B} \ (A, B \in \mathcal{P}(\mathbb{R}^d)).$
- (iv) $\overline{\overline{A}} = \overline{A} \ (A \in \mathcal{P}(\mathbb{R}^d)).$
- 5 次の $\mathbb R$ の部分集合 $A\subseteq\mathbb R$ が開, 閉, またはどちらでもないかを判定せよ.
 - (1) $A = (a, b) \ (a, b \in \mathbb{R}, \ a < b).$
 - (2) $A = (a, b] \ (a, b \in \mathbb{R}, \ a < b).$

- 6 次の \mathbb{R} の部分集合 $A \subset \mathbb{R}$ が開、閉、またはどちらでもないかを判定せよ.
 - $(1) \ A = (a, \infty) \ (a \in \mathbb{R}).$
 - $(2) A = (-\infty, b] (b \in \mathbb{R}).$
- $7 d \in \{1, 2\}$ とする.

$$\mathcal{O} = \{ U \subseteq \mathbb{R}^d \; ; \; U = U^i \}$$

とおくとき, O が次の (i)-(iii) を満たすことを証明せよ. ただし, $\mathfrak{t}(*)$ は * の元の個数を表す.

(i) $\emptyset \in \mathcal{O}$, $\mathbb{R}^d \in \mathcal{O}$.

(ii)
$$\forall \mathcal{U} \subseteq \mathcal{P}(\mathbb{R}^d), \ \bigg((\mathcal{U} \subseteq \mathcal{O}) \wedge (\sharp(\mathcal{U}) < \infty) \Rightarrow \bigcap_{U \in \mathcal{U}} U \in \mathcal{O} \bigg).$$

$$\text{(iii)} \ \forall \mathcal{U} \subseteq \mathcal{P}(\mathbb{R}^d), \ \Bigg(\mathcal{U} \subseteq \mathcal{O} \Rightarrow \bigcup_{U \in \mathcal{U}} U \in \mathcal{O}\Bigg).$$

 $\boxed{8}$ d ∈ {1,2} とする.

$$\mathcal{A} = \{ F \subseteq \mathbb{R}^d \; ; \; F = \overline{F} \}$$

とおくとき, A が次の (i)-(iii) を満たすことを証明せよ. ただし, $\sharp(*)$ は * の元の個数を表す.

(i) $\emptyset \in \mathcal{A}, \mathbb{R}^d \in \mathcal{A}$.

$$\text{(iii)} \ \forall \mathcal{F} \subseteq \mathcal{P}(\mathbb{R}^d), \ \Bigg((\mathcal{F} \subseteq \mathcal{A}) \wedge (\sharp(\mathcal{A}) < \infty) \Rightarrow \bigcup_{F \in \mathcal{F}} F \in \mathcal{A} \Bigg).$$

$$(\mathrm{iii}) \ \forall \mathcal{F} \subseteq \mathcal{P}(\mathbb{R}^d), \ \Bigg(\mathcal{F} \subseteq \mathcal{A} \Rightarrow \bigcap_{F \in \mathcal{F}} F \in \mathcal{A}\Bigg).$$

 $\boxed{9}$ $d \in \{1,2\}$ とする. 任意の $A \in \mathcal{P}(\mathbb{R}^d)$ に対して $\mathcal{U} = \{U \in \mathcal{O} \; ; \; U \subseteq A\}$ とおくと,

$$A^i = \bigcup_{U \in \mathcal{U}} U$$

が成り立つ. つまり, A^i は A に含まれる最大の \mathbb{R}^d の開集合であることを証明せよ.

10 $d \in \{1,2\}$ とする. 任意の $A \in \mathcal{P}(\mathbb{R}^d)$ に対して $\mathcal{F} = \{F \in \mathcal{A} ; F \supseteq A\}$ とおくと,

$$\overline{A} = \bigcap_{F \in \mathcal{F}} F$$

が成り立つ. つまり, \overline{A} は A を含む最小の \mathbb{R}^d の閉集合であることを証明せよ.

[11] (第1分離公理) $d \in \{1,2\}$ とするとき, 任意の $x,y \in \mathbb{R}^d$ に対し,

$$B_r(x) \cap \{y\} = \emptyset$$

を満たすr > 0が存在することを証明せよ.

|12| (第 4 分離公理) $d \in \{1,2\}$ とするとき, \mathbb{R}^d の任意の閉集合 $F,G \subseteq \mathbb{R}^d$ に対し,

$$F \subseteq U$$
, $G \subseteq V$, $U \cap V = \emptyset$

を満たす \mathbb{R}^d の開集合 $U,V\subseteq\mathbb{R}^d$ が存在することを証明せよ.

● ベクトル空間の連結集合・コンパクト集合

13 $d \in \{1, 2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の連結集合とするとき,

$$A\subseteq B\subseteq \overline{A}$$

を満たす \mathbb{R}^d の任意の部分集合 $B \subset \mathbb{R}^d$ は連結であることを証明せよ.

14 $d \in \{1, 2\}, A \subseteq \mathcal{P}(\mathbb{R}^d)$ を \mathbb{R}^d の連結集合族とするとき,

$$\forall A, B \in \mathcal{P}(\mathbb{R}^d), (A, B \in \mathcal{A} \Rightarrow A \cap B \neq \emptyset)$$

ならば、 $\bigcup_{A \in A} A$ は連結であることを証明せよ.

定義. $d \in \{1,2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合とする. A が弧状連結であるとは, 任意の $a,b \in A$ に対し, 次の (i), (ii) を満たす [0,1] 上の連続関数 $f:[0,1] \to \mathbb{R}^d$ が存在することを言う.

- (i) f(0) = a, f(1) = b.
- (ii) $f([0,1]) = \{f(t) ; 0 \le t \le 1\} \subseteq A$.
- 15 $A \subset \mathbb{R}^2$ を \mathbb{R}^2 の部分集合, $a \in A$ とするとき, A が a について星型ならば, つまり,

$$\forall b \in \mathbb{R}^2, (b \in A \Rightarrow \{(1-t)a + tb ; 0 \le t \le 1\} \subseteq A)$$

ならば、Aは弧状連結であることを証明せよ.

16 $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の部分集合とするとき, A が**凸**ならば, つまり,

$$\forall a, b \in \mathbb{R}^2, (a, b \in A \Rightarrow \{(1-t)a + tb : 0 \le t \le 1\} \subseteq A)$$

ならば、A は任意の $a \in A$ ついて星型であることを証明せよ.

- $|17| \emptyset \neq A \subseteq \mathbb{R}$ を \mathbb{R} の部分集合とするとき, 次の (i), (ii) が同値であることを証明せよ.
 - (i) A は \mathbb{R} の区間である. つまり、 $\forall a,b \in \mathbb{R}$ 、 $(a,b \in A \Rightarrow \{(1-t)a+tb; 0 \le t \le 1\} \subseteq A)$.
 - (ii) *A* は連結である.

19

$$A = \left\{ \left(x, \sin \frac{1}{x} \right) \; ; \; x > 0 \right\}$$

とおくとき、次のことを証明せよ.

- (1) $\overline{A} = A \cup \{(0, y) ; -1 \le y \le 1\}.$
- (2) \overline{A} は連結であるが、弧状連結でない.
- 20 $d \in \{1,2\}$ とするとき, \mathbb{R}^d の有限集合がコンパクトであることを証明せよ.

21 $d \in \{1, 2\}, \mathcal{K} \subseteq \mathcal{P}(\mathbb{R}^d)$ を \mathbb{R}^d のコンパクト集合族とするとき,

$$\sharp(\mathcal{K})<\infty$$

ならば, $\bigcup_{K \in \mathcal{K}} K$ はコンパクトであることを証明せよ. ただし, $\sharp(*)$ は * の元の個数を表す.

- 22 $\emptyset \neq A \subseteq \mathbb{R}$ を \mathbb{R} の部分集合とするとき, 次の (i), (ii) が同値であることを証明せよ.
 - (i) *A* は ℝ の有界閉区間である.
 - (ii) A は連結かつコンパクトである.

1.3 点列の極限

● 点列の収束・発散

- [1] (指定演習問題 2) $d \in \{1,2\}$, $a \in \mathbb{R}^d$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合とするとき, 次の (i), (ii) が同値であることを証明せよ.
 - (i) $a \in \overline{A}$.
 - (ii) $\lim_{n\to\infty} a_n = a$ となる A の点列 $\{a_n\}_{n\in\mathbb{N}}$ が存在する.
- $\boxed{2} \ a,b \in \mathbb{R}, \, a \neq b$ とし、 \mathbb{R}^2 の点列 $\left\{ \begin{pmatrix} x_n \\ y_n \end{pmatrix} \right\}_{n \in \mathbb{N}}$ を次の漸化式

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in \mathbb{R}^2, \quad \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -ab & a+b \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix} \quad (n \in \mathbb{N})$$

によって定義するとき,次の問いに答えよ.

- $(1) A = \begin{pmatrix} 0 & 1 \\ -ab & a+b \end{pmatrix}, P = \begin{pmatrix} 1 & 1 \\ a & b \end{pmatrix} とおくとき, P^{-1}AP を求めよ.$
- (2) $\left\{ \begin{pmatrix} x_n \\ y_n \end{pmatrix} \right\}_{n \in \mathbb{N}}$ の一般項を求めよ.
- (3) $\left\{ \begin{pmatrix} x_n \\ y_n \end{pmatrix} \right\}_{n \in \mathbb{N}}$ が収束するための a,b の必要十分条件を求め、その条件のとき、 $\lim_{n \to \infty} \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ の値を求めよ、
- $\boxed{3} \ a \in \mathbb{R} \ \texttt{と} \ \texttt{し}, \ \mathbb{R}^2 \ \texttt{o}$ 点列 $\left\{ \begin{pmatrix} x_n \\ y_n \end{pmatrix} \right\}_{n \in \mathbb{N}}$ を次の漸化式

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in \mathbb{R}^2, \quad \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -a^2 & 2a \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix} \quad (n \in \mathbb{N})$$

によって定義するとき、次の問いに答えよ

- $(1) \ A = \begin{pmatrix} 0 & 1 \\ -a^2 & 2a \end{pmatrix}, \ P = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}$ とおくとき, $P^{-1}AP$ を求めよ.
- (2) $\left\{ \begin{pmatrix} x_n \\ y_n \end{pmatrix} \right\}_{n \in \mathbb{N}}$ の一般項を求めよ.
- (3) $\left\{ \begin{pmatrix} x_n \\ y_n \end{pmatrix} \right\}_{n \in \mathbb{N}}$ が収束するための a の必要十分条件を求め、その条件のとき、 $\lim_{n \to \infty} \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ の値を求めよ.

【補足】 $P^{-1}AP$ を A の標準化と言う.

• Bolzano-Weierstrassの定理

- $\boxed{4}$ $d \in \{1,2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合, $\{a_n\}_{n \in \mathbb{N}}$ を A の点列, $\alpha \in \overline{A}$ とするとき, 次の (i), (ii) が同値であることを証明せよ.
 - (i) $\lim_{n\to\infty} a_n = \alpha$.
 - (ii) $\{a_n\}_{n\in\mathbb{N}}$ の任意の収束する部分列 $\{a_{n(k)}\}_{n\in\mathbb{N}}$ に対して

$$\lim_{k \to \infty} a_{n(k)} = \alpha$$

となる.

- [5] $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合とするとき, 次の (i), (ii) が同値であることを証明せよ.
 - (i) A は**点列コンパクト**である. つまり, A の任意の点列 $\{a_n\}_{n\in\mathbb{N}}$ に対し, $\{a_n\}_{n\in\mathbb{N}}$ の A に収束 する部分列が存在する.
 - (ii) A はコンパクトである.

• Cauchy の定理

- [6] $\theta \in \mathbb{R}, \theta \neq 0$ とするとき, $\left\{ \begin{pmatrix} \cos n\theta \\ \sin n\theta \end{pmatrix} \right\}_{n \in \mathbb{N}}$ は収束しないことを証明せよ.
- 7 $\{a_n\}_{n\in\mathbb{N}}$ を \mathbb{R}^2 の点列とし、数列 $\{s_n\}_{n\in\mathbb{N}}$ を

$$s_n = \sum_{k=0}^n |a_{k+1} - a_k| \quad (n \in \mathbb{N})$$

によって定義するとき、次のことを証明せよ.

(1) m < n を満たす任意の $m, n \in \mathbb{N}$ に対して

$$|a_n - a_m| \le s_{n-1} - s_{m-1}$$

が成り立つ.

- (2) $\{s_n\}_{n\in\mathbb{N}}$ が \mathbb{R} の Cauchy 列ならば, $\{a_n\}_{n\in\mathbb{N}}$ は \mathbb{R}^2 の Cauchy 列である.
- 8 $\{a_n\}_{n\in\mathbb{N}}$ を \mathbb{R}^2 の点列で、ある 0 < r < 1 が存在し、任意の $n \in \mathbb{N}$ 、 $n \ge 1$ に対して

$$|a_{n+1} - a_n| \le r|a_n - a_{n-1}|$$

が成り立つものとするとき,次のことを証明せよ.

(1) m < n を満たす任意の $m, n \in \mathbb{N}$ に対して

$$\sum_{k=m}^{n-1} |a_{k+1} - a_k| \le \frac{r^m - r^n}{1 - r} |a_1 - a_0|$$

が成り立つ.

(2) $\{a_n\}_{n\in\mathbb{N}}$ は \mathbb{R}^2 の Cauchy 列である.

第2章 多変数関数の微分法

2.1 関数の極限

• スカラー値関数の極限

- [1] $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の部分集合, $(a,b) \in A$, $f: A \setminus \{(a,b)\} \to \mathbb{R}$ を $A \setminus \{(a,b)\}$ 上の関数, $\alpha \in \mathbb{R}$ とするとき, 次の (i), (ii) が同値であることを証明せよ.
 - (i) $\lim_{(x,y)\to(a,b)} f(x,y) = \alpha.$
 - (ii) $\forall \varepsilon > 0, \ \exists \delta(\varepsilon) > 0, \ \forall (r, \theta) \in B, \ (0 < r < \delta(\varepsilon) \Rightarrow |f(a + r\cos\theta, b + r\sin\theta) \alpha| < \varepsilon).$

ただし, $B = \{(r, \theta) \in (0, \infty) \times \mathbb{R} ; (a + r \cos \theta, b + r \sin \theta) \in A\}.$

2 次の極限値を求めよ.

(1)
$$\lim_{(x,y)\to(0,0)} (x+y)\sin\frac{1}{x}\sin\frac{1}{y}$$
.

(2)
$$\lim_{(x,y)\to(0,0)} (1+x^2y^2)^{\frac{1}{x^2+y^2}}$$
.

3 次の極限値を求めよ.

(1)
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{x^2+y^2}$$
.

(2)
$$\lim_{(x,y)\to(1,1)} \frac{x(1-y^n)-y(1-x^n)-x^n+y^n}{(1-x)(1-y)(x-y)} \ (n\in\mathbb{N}).$$

2.2 連続関数, 一様連続関数, 半連続関数

• スカラー値連続関数

1 次の \mathbb{R}^2 上の関数 f が (0,0) で連続であるか否かを判定せよ.

(1)
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & ((x,y) \neq (0,0)), \\ 0 & ((x,y) = (0,0)). \end{cases}$$
(2)
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & ((x,y) \neq (0,0)), \\ 0 & ((x,y) = (0,0)). \end{cases}$$

2 次の \mathbb{R}^2 上の関数 f が (0,0) で連続であるか否かを判定せよ.

(1)
$$f(x,y) = \begin{cases} \frac{x^2}{\sqrt{x^2 + y^2}} & ((x,y) \neq (0,0)), \\ 0 & ((x,y) = (0,0)). \end{cases}$$
(2)
$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & ((x,y) \neq (0,0)), \\ 0 & ((x,y) = (0,0)). \end{cases}$$

- ③ $A\subseteq\mathbb{R}^2$ を \mathbb{R}^2 の部分集合, $(a,b)\in A, f:A\to\mathbb{R}$ を A 上の関数とするとき, 次の (i)⇒(ii) を証明 し, (i)⇐(ii) の反例を一つ挙げよ.
 - (i) fは(a,b)で連続である.
 - (ii) f(*,b) は a で連続であり、 f(a,*) は b で連続である.

• ベクトル値連続関数

- $\boxed{4}$ $a \in \mathbb{R}^2$, $f : \mathbb{R}^2 \to \mathbb{R}^2$ を \mathbb{R}^2 上の関数とするとき, 次の (i), (ii) が同値であることを証明せよ.
 - (i) f は a で連続である.
 - (ii) $f(a) \in V$ を満たす \mathbb{R}^2 の任意の開集合 $V \subseteq \mathbb{R}^2$ に対して $a \in U$ を満たす \mathbb{R}^2 のある開集合 $U \subset \mathbb{R}^2$ が存在し、

$$f(U) \subseteq V$$

が成り立つ.

[5] (Banach の不動点定理) $f: \mathbb{R}^2 \to \mathbb{R}^2$ を \mathbb{R}^2 上の関数で, ある 0 < r < 1 が存在し,

$$|f(x) - f(y)| \le r|x - y| \quad (x, y \in \mathbb{R}^2)$$

が成り立つものとするとき、次のことを証明せよ.

(1) $x \in \mathbb{R}^2$ とし、 \mathbb{R}^2 の点列 $\{a_n\}_{n \in \mathbb{N}}$ を次の漸化式

$$a_0 = x$$
, $a_{n+1} = f(a_n)$ $(n \in \mathbb{N})$

によって定義すると、任意の $n \in \mathbb{N}$, $n \ge 1$ に対して

$$|a_{n+1} - a_n| \le r|a_n - a_{n-1}|$$

が成り立つ.

(2) $f(\alpha) = \alpha$ を満たす $\alpha \in \mathbb{R}^2$ が一意に存在する.

【補足】f を \mathbb{R}^2 上の縮小写像と言い, α を f の不動点と言う.

● 最大値の定理

- 6 $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の非有界閉集合, $f: A \to \mathbb{R}$ を A 上の連続関数で, 次の (i), (ii) を満たすものとする.
 - (i) f(a,b) > 0 を満たす $(a,b) \in A$ が存在する.

(ii)
$$\lim_{(x,y)\in A, |(x,y)|\to\infty} f(x,y) = 0.$$

このとき, f の A での最大値が存在することを証明せよ.

- $|7| A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の非有界閉集合, $f: A \to \mathbb{R}$ を A 上の連続関数で, 次の (i), (ii) を満たすものとする.
 - (i) f(a,b) < 0 を満たす $(a,b) \in A$ が存在する.

(ii)
$$\lim_{(x,y)\in A, |(x,y)|\to\infty} f(x,y) = 0.$$

このとき, f の A での最小値が存在することを証明せよ.

8 次の ℝ2 上の関数

$$f(x,y) = xye^{-\frac{x^2+y^2}{2}} \quad ((x,y) \in \mathbb{R}^2)$$

の \mathbb{R}^2 での最大値・最小値が存在することを証明し、f が最大、最小となる点をそれぞれ求めよ.

 $\boxed{9}$ $A = [0, \infty)^2$ とおくとき、次の A 上の関数

$$f(x,y) = (x^2 - y^2)e^{-(x+y)}$$
 $((x,y) \in A)$

のAでの最大値・最小値が存在することを証明し,fが最大,最小となる点をそれぞれ求めよ.

全導関数と接平面 2.3

● スカラー値関数の方向導関数・偏導関数

 $\boxed{1} \ e = (a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$ とするとき, 次の \mathbb{R}^2 上の関数 f が (0,0) で e 方向に微分可能であるか否 かを判定し, e 方向に微分可能ならば, $\frac{\partial f}{\partial e}(0,0)$ を求めよ.

(1)
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & ((x,y) \neq (0,0)), \\ 0 & ((x,y) = (0,0)). \end{cases}$$
(2)
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & ((x,y) \neq (0,0)), \\ 0 & ((x,y) = (0,0)). \end{cases}$$

(2)
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & ((x,y) \neq (0,0)), \\ 0 & ((x,y) = (0,0)). \end{cases}$$

2 $e=(a,b)\in\mathbb{R}^2\setminus\{(0,0)\}$ とするとき, 次の \mathbb{R}^2 上の関数 f が (0,0) で e 方向に微分可能であるか否 かを判定し, e 方向に微分可能ならば, $\frac{\partial f}{\partial e}(0,0)$ を求めよ.

(1)
$$f(x,y) = \begin{cases} \frac{x^2}{\sqrt{x^2 + y^2}} & ((x,y) \neq (0,0)), \\ 0 & ((x,y) = (0,0)). \end{cases}$$

(2)
$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & ((x,y) \neq (0,0)), \\ 0 & ((x,y) = (0,0)). \end{cases}$$

③ 次の関数 f(x,y) の偏導関数 $\frac{\partial f}{\partial x}(x,y)$, $\frac{\partial f}{\partial y}(x,y)$ を求めよ.

(1)
$$f(x,y) = \log(x^2 + 2xy - y^2)$$
.

(2)
$$f(x,y) = \arctan \frac{x}{y}$$
.

[4] 次の関数 f(x,y) の偏導関数 $\frac{\partial f}{\partial x}(x,y)$, $\frac{\partial f}{\partial y}(x,y)$ を求めよ.

(1)
$$f(x,y) = \sqrt{x^2 + 2xy - y^2}$$
.

(2)
$$f(x,y) = \arcsin \frac{x}{y}$$
.

• スカラー値関数の全導関数

 $\boxed{5}$ 次の \mathbb{R}^2 上の関数 f が (0,0) で全微分可能であるか否かを判定せよ.

(1)
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & ((x,y) \neq (0,0)), \\ 0 & ((x,y) = (0,0)). \end{cases}$$
(2)
$$f(x,y) = \begin{cases} \frac{2xy}{\sqrt{x^2 + y^2}} & ((x,y) \neq (0,0)), \\ 0 & ((x,y) = (0,0)). \end{cases}$$

|6| 次の \mathbb{R}^2 上の関数 f が (0,0) で全微分可能であるか否かを判定せよ.

(1)
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}} & ((x,y) \neq (0,0)), \\ 0 & ((x,y) = (0,0)). \end{cases}$$
(2)
$$f(x,y) = \begin{cases} xy \sin \frac{1}{\sqrt{x^2 + y^2}} & ((x,y) \neq (0,0)), \\ 0 & ((x,y) = (0,0)). \end{cases}$$

• ベクトル値関数の全導関数

$$g(u,v) = f(x,y), \quad \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \quad ((u,v) \in \mathbb{R}^2)$$

によって定義するとき、次のことを証明せよ.

- (1) $g'(u,v) = {}^{t}Af'(x,y).$
- |f'(x,y)| = |g'(u,v)| であるための A の必要十分条件は

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \quad \sharp \, \text{tit} \quad A = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \begin{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{pmatrix}$$

を満たす $\theta \in \mathbb{R}$ が存在することである.

[8] (Cauchy-Riemann 方程式) $U,V\subseteq\mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f:U\to V,g:V\to\mathbb{R}$ をそれぞれ U,V 上の全微分可能関数とするとき, f が

$$\frac{\partial f_1}{\partial x_1}(x) = \frac{\partial f_2}{\partial x_2}(x), \quad \frac{\partial f_2}{\partial x_1}(x) = -\frac{\partial f_1}{\partial x_2}(x) \quad (x \in U)$$

を満たせば,

$$|(g \circ f)'(x)| = |g'(f(x))||f_1'(x)| \quad (x \in U),$$

$$|(g \circ f)'(x)| = |g'(f(x))||f_2'(x)| \quad (x \in U)$$

が成り立つことを証明せよ.

 $\boxed{9}$ (指定演習問題 3) (進行波) $c>0,\,u:\mathbb{R}^2\to\mathbb{R}$ を \mathbb{R}^2 上の C^1 級関数とするとき, u が

$$\frac{\partial u}{\partial t}(x,t) + c \frac{\partial u}{\partial x}(x,t) = 0 \quad ((x,t) \in \mathbb{R}^2)$$

を満たせば、u は x-ct の関数である. つまり、

$$u(x,t) = f(x - ct) \quad ((x,t) \in \mathbb{R}^2)$$

を満たす \mathbb{R} 上の C^1 級関数 $f:\mathbb{R} \to \mathbb{R}$ が存在することを証明せよ.

10 (後退波) c > 0, $u : \mathbb{R}^2 \to \mathbb{R}$ を \mathbb{R}^2 上の C^1 級関数とするとき, u が

$$\frac{\partial u}{\partial t}(x,t) - c\frac{\partial u}{\partial x}(x,t) = 0 \quad ((x,t) \in \mathbb{R}^2)$$

を満たせば, u は x + ct の関数である. つまり,

$$u(x,t) = f(x+ct) \quad ((x,t) \in \mathbb{R}^2)$$

を満たす \mathbb{R} 上の C^1 級関数 $f:\mathbb{R} \to \mathbb{R}$ が存在することを証明せよ.

- [11] $m \in \mathbb{N}, f : \mathbb{R}^2 \to \mathbb{R}$ を \mathbb{R}^2 上の C^1 級関数とするとき, 次の (i), (ii) が同値であることを証明せよ.
 - (i) $f(ax) = a^m f(x) \ (a > 0, \ x \in \mathbb{R}^2).$
 - (ii) $\langle x, f'(x) \rangle = mf(x) \ (x \in \mathbb{R}^2).$
- [12] $U,V\subseteq\mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f:U\to V,\,g:V\to\mathbb{R}^2$ をそれぞれ $U,\,V$ 上の全微分可能関数とする とき,

$$(g \circ f)'(x) = g'(f(x))f'(x) \quad (x \in U)$$

● 接平面

[13] 次の U 上の関数 f のグラフ G(f) の $(a,b,f(a,b)) \in G(f)$ での接平面 $T_{(a,b)}(f)$ の方程式を求めよ.

(1)
$$f(x,y) = \log(1 + x^2 + y^2), U = \mathbb{R}^2$$
.

(2)
$$f(x,y) = \sqrt{c^2 - x^2 - y^2}$$
, $U = B_c(0,0)$ $(c > 0)$.

14 $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $a \in U$, $f: U \to \mathbb{R}$ を U 上の a で全微分可能な関数とするとき, $f'(a) \neq 0$ ならば, 次の $\partial B_1(0)$ 上の関数

$$g(e) = \frac{\partial f}{\partial e}(a) \quad (e \in \partial B_1(0))$$

の $\partial B_1(0)$ での最大値・最小値が存在することを証明し, g が最大, 最小となる点をそれぞれ求めよ.

第3章 Taylorの定理, 陰関数定理

3.1 高階偏導関数

• 多重指数

 $\boxed{1}$ $n \in \mathbb{N}$ とするとき, 次の等式を証明せよ. ただし, $\sharp(*)$ は * の元の個数を表す.

- (1) $\sharp (\{\alpha \in \mathbb{N}^2 ; |\alpha| = n\}) = n + 1.$
- (2) $\sharp (\{\alpha \in \mathbb{N}^2 ; |\alpha| < n\}) = \frac{1}{2}n(n+1).$

 $\boxed{2}$ $x=(x_1,x_2)\in\mathbb{R}^2$ とするとき、次の和を書き下せ.

- $(1) \sum_{|\alpha|=2} \frac{x^{\alpha}}{\alpha!}.$
- (2) $\sum_{|\alpha|<2} \frac{x^{\alpha}}{\alpha!}.$

 $\boxed{3}$ (二項定理) 任意の $\alpha \in \mathbb{N}^2$ に対して

$$(x+y)^{\alpha} = \sum_{\beta < \alpha} {\alpha \choose \beta} x^{\alpha-\beta} y^{\beta} \quad (x, y \in \mathbb{R}^2)$$

が成り立つことを証明せよ.

[4] (Leibniz の法則) $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $n \in \mathbb{N}$, $f,g:U \to \mathbb{R}$ を U 上の C^n 級関数とするとき, $|\alpha|=n$ を満たす任意の $\alpha \in \mathbb{N}^2$ に対して

$$(fg)^{(\alpha)}(x) = \sum_{\beta \le \alpha} {\alpha \choose \beta} f^{(\alpha-\beta)}(x) g^{(\beta)}(x) \quad (x \in U)$$

• n 階偏導関数

 $\boxed{5}$ $\alpha \in \mathbb{R}$ とするとき, 次の $\mathbb{R}^2 \setminus \{0\}$ 上の関数

$$f(x) = |x|^{\alpha} \quad (x \in \mathbb{R}^2 \setminus \{0\})$$

の 2 階偏導関数 $\frac{\partial^2 f}{\partial x_i \partial x_j} \; (i,j \in \{1,2\}) \;$ を求めよ.

定義.

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

を Laplace 作用素と言う.

6 次の \mathbb{R}^2 の開集合 U 上の関数 f が U で調和である. つまり,

$$\Delta f = 0$$

を満たすことを証明せよ.

(1)
$$f(x,y) = x^3 - 3x^2y - 3xy^2 + y^3$$
, $U = \mathbb{R}^2$.

(2)
$$f(x,y) = \log \sqrt{x^2 + y^2}$$
, $U = \mathbb{R}^2 \setminus \{(0,0)\}$.

7 次の ℝ2 上の関数

$$f(x,y) = \begin{cases} \frac{x^3y}{x^2 + y^2} & ((x,y) \neq (0,0)), \\ 0 & ((x,y) = (0,0)) \end{cases}$$

は \mathbb{R}^2 で C^1 級であるが, $\frac{\partial^2 f}{\partial u \partial x}(0,0) \neq \frac{\partial^2 f}{\partial x \partial u}(0,0)$ であることを証明せよ.

8 次の ℝ2 上の関数

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & ((x,y) \neq (0,0)), \\ 0 & ((x,y) = (0,0)) \end{cases}$$

は \mathbb{R}^2 で C^1 級であるが, $\frac{\partial^2 f}{\partial u \partial x}(0,0) \neq \frac{\partial^2 f}{\partial x \partial y}(0,0)$ であることを証明せよ.

定義.

$$\Delta_S = \frac{\partial^2}{\partial \theta^2}$$

を Laplace-Beltrami 作用素と言う.

[9] $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ を $\mathbb{R}^2 \setminus \{(0,0)\}$ 上の C^2 級関数とし, $(0,\infty) \times \mathbb{R}$ 上の関数 $g: (0,\infty) \times \mathbb{R} \to \mathbb{R}$ を

$$g(r,\theta) = f(r\cos\theta, r\sin\theta) \quad (r > 0, \ \theta \in \mathbb{R})$$

によって定義するとき,

$$\Delta f(x,y) = \frac{\partial^2 g}{\partial r^2}(r,\theta) + \frac{1}{r} \frac{\partial g}{\partial r}(r,\theta) + \frac{1}{r^2} \Delta_S g(r,\theta)$$

[10] (Cauchy-Riemann 方程式) $U,V\subseteq\mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f:U\to V,g:V\to\mathbb{R}$ をそれぞれ U,V 上の C^2 級関数とするとき, f が

$$\frac{\partial f_1}{\partial x_1}(x) = \frac{\partial f_2}{\partial x_2}(x), \quad \frac{\partial f_2}{\partial x_1}(x) = -\frac{\partial f_1}{\partial x_2}(x) \quad (x \in U)$$

を満たせば,

$$\Delta(g \circ f)(x) = \Delta g(f(x))|f_1'(x)|^2 \quad (x \in U),$$

$$\Delta(g \circ f)(x) = \Delta g(f(x))|f_2'(x)|^2 \quad (x \in U)$$

が成り立つことを証明せよ.

[11] (波動方程式) c > 0, $u : \mathbb{R}^2 \to \mathbb{R}$ を \mathbb{R}^2 上の C^2 級関数とするとき, u が

$$\frac{\partial^2 u}{\partial t^2}(x,t) = c^2 \frac{\partial^2 u}{\partial x^2}(x,t) \quad ((x,t) \in \mathbb{R}^2)$$

を満たせば, u は x-ct の関数 (進行波) と x+ct の関数 (後退波) の和である. つまり,

$$u(x,t) = f(x-ct) + g(x+ct) \quad ((x,t) \in \mathbb{R}^2)$$

を満たす \mathbb{R} 上の \mathbb{C}^2 級関数 $f, g: \mathbb{R} \to \mathbb{R}$ が存在することを証明せよ.

[12] (Lorentz 変換) $0 < v < c, \varphi : \mathbb{R}^2 \to \mathbb{R}$ を \mathbb{R}^2 上の C^2 級関数とするとき, φ が

$$\frac{\partial^2 \varphi}{\partial t^2}(x,t) = c^2 \frac{\partial^2 \varphi}{\partial x^2}(x,t) \quad ((x,t) \in \mathbb{R}^2)$$

を満たせば,

$$\psi(\xi,\tau) = \varphi(x,t), \quad \begin{pmatrix} \xi \\ c\tau \end{pmatrix} = \frac{1}{\sqrt{1 - (v/c)^2}} \begin{pmatrix} 1 & -v/c \\ -v/c & 1 \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} \quad ((\xi,\tau) \in \mathbb{R}^2)$$

によって定義される $\psi: \mathbb{R}^2 \to \mathbb{R}$ は

$$\frac{\partial^2 \psi}{\partial \tau^2}(\xi, \tau) = c^2 \frac{\partial^2 \psi}{\partial \xi^2}(\xi, \tau)$$

を満たすことを証明せよ.

[13] $m,n \in \mathbb{N}, n > 2, f : \mathbb{R}^2 \to \mathbb{R}$ を \mathbb{R}^2 上の \mathbb{C}^n 級関数とするとき, f が

$$f(ax) = a^m f(x)$$
 $(a > 0, x \in \mathbb{R}^2)$

を満たせば.

$$\sum_{k=0}^{n} \binom{n}{k} x_1^{n-k} x_2^k \frac{\partial^n f}{\partial x_1^{n-k} \partial x_2^k} (x) = m(m-1) \cdots (m-n+1) f(x) \quad (x \in \mathbb{R}^2)$$

3.2 Taylorの定理と関数の極大・極小

• 双線型形式, 2次形式

 $\begin{bmatrix} 1 \end{bmatrix} A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \in S_2(\mathbb{R})$ とするとき、次のことを証明せよ.

- (1) Aの任意の固有値は実数である.
- (2) $\lambda, \mu \in \mathbb{R}$ を A の固有値とし、

$$P = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad \theta = \frac{1}{2} \arctan \frac{2b}{a - c}$$

とおくと,

$$P^{-1}AP = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$

が成り立つ.

$$\begin{bmatrix} 2 \end{bmatrix} A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \in S_2(\mathbb{R}) \$$
とし、 $\mathbb{R}^2 \perp$ の関数 $Q_A : \mathbb{R}^2 \to \mathbb{R}$ を

$$Q_A(x,y) = ax^2 + 2bxy + cy^2 \quad ((x,y) \in \mathbb{R}^2)$$

によって定義する. このとき, $\lambda, \mu \in \mathbb{R}$ を A の固有値とし,

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}, \quad \theta = \frac{1}{2} \arctan \frac{2b}{a-c}$$

とおくと,

$$Q_A(x,y) = \lambda u^2 + \mu v^2$$

- $\boxed{3}$ $A \in S_2(\mathbb{R})$ とするとき, 次の (i), (ii) が同値であることを証明せよ.
 - (i) *A* は正値である.
 - (ii) Aの任意の固有値は正である.
- $\boxed{4}$ $A \in S_2(\mathbb{R})$ とするとき, 次の (i), (ii) が同値であることを証明せよ.
 - (i) A は負値である.
 - (ii) A の任意の固有値は負である.

● Hesse 行列と関数の極大・極小

 $\boxed{5} \ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}), \ f: \mathbb{R}^2 \to \mathbb{R} \ \& \ \mathbb{R}^2 \ \bot o \ C^2 \ \text{級関数とし}, \ \mathbb{R}^2 \ \bot o \ \mathbb{R} \ \& \ \mathbb{R} \ \to \mathbb{R} \ \to \mathbb{R} \ \& \ \mathbb{R} \ \to \mathbb{R} \ \to \mathbb{R} \ \& \ \mathbb{R} \ \to \mathbb{R} \ \to \mathbb{R} \ \& \ \mathbb{R} \ \to \mathbb{R} \ \to \mathbb{R} \ \& \ \to \mathbb{R} \$

$$g(u,v) = f(x,y), \quad \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \quad ((u,v) \in \mathbb{R}^2)$$

によって定義するとき、次のことを証明せよ. ただし、 I は 2 次単位行列を表す.

- (1) $H_g(u,v) = {}^t A H_f(x,y) A$.
- (2) (Laplace 作用素の合同変換不変性) $A^t A = I = {}^t A A$ ならば, $\Delta f(x,y) = \Delta g(u,v)$.
- 6 次の ℝ2 上の関数

$$f(x,y) = 2x^3 + 3x^2y + y^3 - 12x - 6y \quad ((x,y) \in \mathbb{R}^2)$$

が極大,極小,鞍となる点をそれぞれ求めよ.

| 7 (指定演習問題 4) a > 0 とするとき, 次の \mathbb{R}^2 上の関数

$$f(x,y) = xy(x^2 + y^2 - a^2) \quad ((x,y) \in \mathbb{R}^2)$$

が極大,極小,鞍となる点をそれぞれ求めよ.

 $\boxed{8}$ 0 < a < b とするとき、次の \mathbb{R}^2 上の関数

$$f(x,y) = \frac{1}{3}\sqrt{x^2 + y^2}^3 - \frac{1}{2}(a+b)(x^2 + y^2) + ab\sqrt{x^2 + y^2} \quad ((x,y) \in \mathbb{R}^2)$$

が極大,極小,鞍となる点をそれぞれ求めよ.

9 次の ℝ2 上の関数

$$f(x,y) = (x^2 - y^2)e^{-\frac{x^2 + y^2}{2}}$$
 $((x,y) \in \mathbb{R}^2)$

が極大,極小,鞍となる点をそれぞれ求めよ.

10 次の \mathbb{R}^2 上の関数

$$f(x,y) = (xy + x + y - 1)e^{-(x+y)}$$
 $((x,y) \in \mathbb{R}^2)$

が極大,極小,鞍となる点をそれぞれ求めよ.

3.3 陰関数定理と関数の条件付き極値

• 陰関数定理, 逆関数定理

 $\boxed{1}$ \mathbb{R}^2 上の関数 $f: \mathbb{R}^2 \to \mathbb{R}$ を

$$f(x,y) = x^3 - 3x^2y + 2y^3 + x - 2y + 1 \quad ((x,y) \in \mathbb{R}^2)$$

によって定義するとき、次の問いに答えよ.

- (1) $f(x,\varphi(x))=0$ によって定義される 1 のある開近傍 $U\subseteq\mathbb{R}$ 上の関数 $\varphi:U\to\mathbb{R}$ が存在することを証明せよ.
- $(2) \varphi(1), \varphi'(1)$ の値をそれぞれ求めよ.
- $\boxed{2}$ \mathbb{R}^2 上の関数 $f: \mathbb{R}^2 \to \mathbb{R}$ を

$$f(x,y) = 2x^3 - y^3 + x^2 - 4xy + y^2 + 4 \quad ((x,y) \in \mathbb{R}^2)$$

によって定義するとき、次の問いに答えよ.

- (1) $f(x,\varphi(x))=0$ によって定義される 0 のある開近傍 $U\subseteq\mathbb{R}$ 上の関数 $\varphi:U\to\mathbb{R}$ が存在することを証明せよ.
- $(2) \varphi(0), \varphi'(0)$ の値をそれぞれ求めよ.
- $\boxed{3}$ $U,V\subseteq\mathbb{R}$ を \mathbb{R} の開集合, $a\in U,b\in V,f:U\times V\to\mathbb{R}$ を $U\times V$ 上の C^3 級関数とするとき,

$$f(a,b) = 0, \quad \frac{\partial f}{\partial y}(a,b) \neq 0$$

ならば, $f(x,\varphi(x))=0$ によって定義される a のある開近傍 $U'\subseteq U$ 上の C^3 級関数 $\varphi:U'\to\mathbb{R}$ が存在する. このとき, 次の問いに答えよ.

- (1) $\varphi'(x)$ を $f_x(x,\varphi(x))$, $f_y(x,\varphi(x))$ で表せ.
- (2) $\varphi''(x)$ を $f_x(x,\varphi(x))$, $f_y(x,\varphi(x))$, $f_{xx}(x,\varphi(x))$, $f_{xy}(x,\varphi(x))$, $f_{yy}(x,\varphi(x))$ で表せ.
- $(3) \varphi \mathcal{E}$

$$\varphi(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + o((x - a)^2) \quad (x \to a)$$

で近似せよ.

 $\boxed{4}$ \mathbb{R}^2 上の関数 $f: \mathbb{R}^2 \to \mathbb{R}$ を

$$f(x,y) = x^3 + 2y^3 - 6xy \quad ((x,y) \in \mathbb{R}^2)$$

によって定義するとき、次の問いに答えよ.

- (1) $f(x,\varphi(x))=0$ によって定義される 2 のある開近傍 $U\subseteq\mathbb{R}$ 上の関数 $\varphi:U\to\mathbb{R}$ が存在することを証明せよ.
- (2) φ が極大, 極小となる点をそれぞれ求めよ.

 $\boxed{5}$ \mathbb{R}^2 上の関数 $f: \mathbb{R}^2 \to \mathbb{R}$ を

$$f(x,y) = x^3 + y^3 - 3xy^2 + 1 \quad ((x,y) \in \mathbb{R}^2)$$

によって定義するとき,次の問いに答えよ.

- (1) $f(x,\varphi(x))=0$ によって定義される 1 のある開近傍 $U\subseteq\mathbb{R}$ 上の関数 $\varphi:U\to\mathbb{R}$ が存在することを証明せよ.
- (2) φ が極大, 極小となる点をそれぞれ求めよ.
- [6] $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}$ を U 上の C^1 級関数とする. $C = \{(x,y) \in U \; ; \; f(x,y) = 0\}$ とおくとき, 次のことを証明せよ.
 - (1) $f'(a,b) \neq 0$ を満たす任意の $(a,b) \in C$ に対し, C の (a,b) での接線 T は

$$T = \{(x,y) \in \mathbb{R}^2 ; f_x(a,b)(x-a) + f_y(a,b)(y-b) = 0\}$$

である.

(2) $f'(a,b) \neq 0$ を満たす任意の $(a,b) \in C$ に対し, C の (a,b) での法線 N は

$$N = \{(x,y) \in \mathbb{R}^2 ; f_y(a,b)(x-a) - f_x(a,b)(y-b) = 0\}$$

である.

- $\boxed{7}$ $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}^2$ を U 上の C^1 級関数とするとき, 次のことを証明せよ.
 - (1) (Barrow の公式) $[a,b] = \{(1-t)a+tb \; ; \; 0 \leq t \leq 1\} \subseteq U$ を満たす任意の $a,b \in U$ に対して

$$f(b) - f(a) = \int_0^1 J_f((1-t)a + tb)(b-a)dt$$

が成り立つ.

(2) (有限増分の定理) $[a,b] \subseteq U$ を満たす任意の $a,b \in U$ に対して

$$|f(b) - f(a)| \le \max_{x \in [a,b]} |J_f(x)| |b - a|$$

が成り立つ.

[8] (逆関数定理) $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $n \in \mathbb{N}$, $n \ge 1$, $f: U \to \mathbb{R}^2$ を U 上の C^n 級関数とするとき, f が U から \mathbb{R}^2 への単射であり, かつ

$$\forall x \in U, \det f'(x) \neq 0$$

ならば, 次の (i) を満たす \mathbb{R}^2 の開集合 $V\subseteq\mathbb{R}^2$ と次の (ii) を満たす V 上の C^n 級関数 $g:V\to U$ が存在することを証明せよ.

- (i) f(U) = V.
- (ii) $g = f^{-1}$.

さらに,

$$g'(f(x)) = f'(x)^{-1} \quad (x \in U)$$

● Lagrange の乗数法と関数の条件付き極値

$$\boxed{9} \ C = \left\{ (x,y) \in \mathbb{R}^2 \; ; \; \frac{x^2}{6} + \frac{y^2}{3} = 1 \right\}$$
 とおくとき, 次の C 上の関数

$$f(x,y) = x - y \quad ((x,y) \in C)$$

のCでの最大値・最小値が存在することを証明し、fが最大、最小となる点をそれぞれ求めよ。

$$\boxed{10} \ C = \left\{ (x,y) \in \mathbb{R}^2 \ ; \ \frac{x^2}{4} + \frac{y^2}{5} = 1 \right\} \, \texttt{とおくとき}, \, \text{次の} \, C \, \texttt{上の関数}$$

$$f(x,y) = xy \quad ((x,y) \in C)$$

のCでの最大値・最小値が存在することを証明し、fが最大、最小となる点をそれぞれ求めよ。

「11」(指定演習問題 5) $C = \{(x,y) \in \mathbb{R}^2 : x^2 - xy + y^2 = 3\}$ とおくとき、次の C 上の関数

$$f(x,y) = x - y \quad ((x,y) \in C)$$

のCでの最大値・最小値が存在することを証明し、fが最大、最小となる点をそれぞれ求めよ。

 $\boxed{12}$ $C = \{(x,y) \in \mathbb{R}^2 ; x^2 + y^2 = 3\}$ とおくとき, 次の C 上の関数

$$f(x,y) = x^2 + 2xy - y^2 \quad ((x,y) \in C)$$

のCでの最大値・最小値が存在することを証明し、fが最大、最小となる点をそれぞれ求めよ.

[13] $C = \{(x,y) \in \mathbb{R}^2 ; x^2 + y^2 = 6\}$ とおくとき、次の C 上の関数

$$f(x,y) = x^3 + y^3 - 3x - 3y \quad ((x,y) \in C)$$

のCでの最大値・最小値が存在することを証明し、fが最大、最小となる点をそれぞれ求めよ.

 $\boxed{14}$ $C = \{(x,y) \in \mathbb{R}^2 ; 2x^3 + 5x^2 - y^2 = 0\}$ とおくとき、次の C 上の関数

$$f(x,y) = xy \quad ((x,y) \in C)$$

が極大、極小となる点をそれぞれ求めよ、

[15] (エントロピー) $C = \{(x,y) \in (0,\infty)^2 ; x+y=1\}$ とおくとき、次の C 上の関数

$$f(x,y) = x \log \frac{1}{x} + y \log \frac{1}{y} \quad ((x,y) \in C)$$

のCでの最大値が存在することを証明し、fが最大となる点を求めよ.

[16] $(x_0, y_0) \in \mathbb{R}^2$, $a, b, c \in \mathbb{R}$, $(a, b) \neq (0, 0)$ とし, $L = \{(x, y) \in \mathbb{R}^2 ; ax + by + c = 0\}$ とおくとき, (x_0, y_0) と L の距離 d は

$$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

であることを証明せよ.

- $\boxed{17}$ a,b>0 とし, $E=\left\{(x,y)\in\mathbb{R}^2\;;\; \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\right\}$ とおくとき,E に内接する長方形の中から,面積が最大の長方形とその面積を求めよ.
- [18] (等周問題) 周の長さが l>0 の長方形の中から, 面積が最大の長方形とその面積を求めよ.
- [19] (効用最大化問題) 消費財 A, B の価格をそれぞれ a>0, b>0 とする. A, B の消費量がそれぞれ $x\geq 0$, $y\geq 0$ ならば, 消費者は効用 $u(x,y)\geq 0$ を得るとき, 次の問いに答えよ.
 - (1) 消費者の支出を 1 とするとき、Lagrange の乗数法を用いて消費者の得る効用 u(x,y) が最大となる消費量 (x,y) を求める問題を定式化せよ.
 - (2) (Cobb-Douglas 型関数) $\alpha, \beta > 0, \alpha + \beta = 1, u(x,y) = x^{\alpha}y^{\beta}$ のとき, (1) を解け.
- [20] (費用最小化問題) 消費財 A, B の価格をそれぞれ a > 0, b > 0 とする. A, B の消費量がそれぞれ $x \ge 0$, $y \ge 0$ ならば, 消費者は効用 $u(x,y) \ge 0$ を得るとき, 次の問いに答えよ.
 - (1) 消費者の得る効用 u(x,y) を 1 とするとき, Lagrange の乗数法を用いて消費者の支出が最小となる消費量 (x,y) を求める問題を定式化せよ.
 - (2) (Cobb-Douglas 型関数) $\alpha, \beta > 0, \alpha + \beta = 1, u(x,y) = x^{\alpha}y^{\beta}$ のとき, (1) を解け.

第4章 多変数関数の積分法

4.1 有界閉区間での多重積分

• 累次積分

1 次の二重積分の値を求めよ.

(1)
$$\iint_{[0,a]\times[0,b]} y e^{xy} dx dy \ (a,b>0).$$

(2)
$$\iint_{[a,b]\times[0,1]} y^x dx dy \ (-1 < a < b).$$

2 次の二重積分の値を求めよ.

(1)
$$\iint_{[0,a]\times[0,b]} xy\sin(x^2+y^2)dxdy \ (a,b>0).$$

(2)
$$\iint_{\left[0,\frac{\pi}{2}\right]\times[0,2]} x^2 y \sin(xy^2) dx dy.$$

3 次の二重積分の値を求めよ.

(1)
$$\iint_{[0,\sqrt{3}]\times[0,1]} \frac{x}{(1+x^2+y^2)^2} dx dy.$$

(2)
$$\iint_{[0,1]\times[0,\sqrt{3}]} \frac{y}{1+x^2+y^2} dx dy.$$

 $\boxed{4}$ $a_i,b_i\in\mathbb{R},~a_i< b_i~(i\in\{1,2\})$ とし、 $I=[a_1,b_1]\times[a_2,b_2]$ とおく、 $f:I\to\mathbb{R}$ を I 上の有界関数で、任意の $a_1\leq x_1\leq b_1$ に対し、 f_{x_1} が $[a_2,b_2]$ で可積分であるものとする。 $[a_1,b_1]$ 上の関数 $F:[a_1,b_1]\to\mathbb{R}$ を

$$F(x_1) = \int_{a_2}^{b_2} f(x_1, x_2) dx_2 \quad (a_1 \le x_1 \le b_1)$$

によって定義するとき、次のことを証明せよ.

- (1) f が I で連続ならば, F は $[a_1,b_1]$ で連続である.
- (2) f が I で連続かつ x_1 について偏微分可能であり、かつ $\frac{\partial f}{\partial x_1}$ が I で連続ならば、F は $[a_1,b_1]$ で C^1 級であり、

$$F'(x_1) = \int_{a_2}^{b_2} \frac{\partial f}{\partial x_1}(x_1, x_2) dx_2 \quad (a_1 \le x \le b_1)$$

が成り立つ.

 $\boxed{5}$ (Frullani 積分) $f:(0,\infty)\to\mathbb{R}$ を $(0,\infty)$ 上の C^1 級関数とするとき,

$$\lim_{x \to +0} f(x) = \alpha, \quad \lim_{x \to \infty} f(x) = \beta$$

となる $\alpha, \beta \in \mathbb{R}$ が存在すれば、任意の 0 < a < b に対して

$$\int_0^\infty \frac{f(bx) - f(ax)}{x} dx = (\beta - \alpha) \log \frac{b}{a}$$

4.2 一般の集合での多重積分

● 面積

- $\boxed{1}$ $A, B \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の部分集合とするとき, 次の等式を証明せよ.
 - $(1) \ \chi_{A \cup B} = \chi_A + \chi_B \chi_{A \cap B}.$
 - (2) $\chi_{A \cap B} = \chi_A \chi_B$.
 - (3) $\chi_{A \setminus B} = \chi_A (1 \chi_B)$.
 - (4) $\chi_{A \triangle B} = |\chi_A \chi_B|$. $\hbar \mathcal{E} \cup A \triangle B = (A \cup B) \setminus (A \cap B)$.
- $\boxed{2}$ $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の有界集合とするとき,

$$\partial A = \{x \in \mathbb{R}^2 ; \chi_A \ \text{tx} \ \text{で連続でない} \}$$

が成り立つことを証明せよ.

- ③ (指定演習問題 6) a,b>0 とし, $T\subseteq \mathbb{R}^2$ を (0,0), (a,0), (a,b) を頂点とする閉三角形とするとき, 次の問いに答えよ. ただし, $\sharp(*)$ は * の元の個数を表す.
 - (1) $K = [0, a] \times [0, b] \succeq \mathcal{U}, \Delta \in \mathcal{D}(K) \succeq \mathcal{U}$

$$\Delta = \left\{ \left(\frac{k_1}{n} a, \frac{k_2}{n} b \right) ; (k_1, k_2) \in \{0, 1, \dots, n\}^2 \right\}$$

によって定義する. $\underline{K} = \{(k_1,k_2) \; ; \; I_{(k_1,k_2)} \subseteq T\}, \; \overline{K} = \{(k_1,k_2) \; ; \; I_{(k_1,k_2)} \cap T^i \neq \emptyset\}$ とおくとき, $\sharp(\underline{K})$, $\sharp(\overline{K})$ を求めよ.

- (2) Tが面積確定であることを証明し、Tの面積を求めよ.
- $\boxed{4}$ $a,b,c,d \in \mathbb{R}, a < b, c < d$ とし, $A = \mathbb{Q}^2 \cap ([a,b] \times [c,d])$ とおくとき, 次のことを証明せよ.
 - $(1) A = (\mathbb{Q} \cap [a, b]) \times (\mathbb{Q} \cap [c, d]).$
 - (2) A は面積確定でない.
- 5 $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の有界集合とするとき, 次の (i), (ii) が同値であることを証明せよ.
 - (i) *A* は面積確定である.
 - (ii) ∂A は面積零である.
- 6 $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の有界集合とするとき, A が面積確定ならば, A^i , \overline{A} は面積確定であり,

$$a(A^i) = a(A) = a(\overline{A})$$

• 可積分関数と多重積分

[7] $N \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の有界集合, $f: N \to \mathbb{R}$ を N 上の有界関数とするとき, N が面積零ならば, f は N で可積分であり,

$$\iint_{N} f(x)dx = 0$$

が成り立つことを証明せよ.

- 图 $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の有界集合, $f,g:A \to \mathbb{R}$ を A 上の有界関数とし, $N = \{x \in A \; ; \; f(x) \neq g(x)\}$ と おくとき, N が面積零ならば, 次の (i), (ii) は同値であることを証明せよ.
 - (i) *f* は *A* で可積分である.
 - (ii) g は A で可積分である.

さらに、(i) または(ii) を満たせば、

$$\iint_A f(x)dx = \iint_A g(x)dx$$

• 累次積分

9 次の二重積分の値を求めよ.

(1)
$$\iint_A \frac{y \sin x}{x} dx dy$$
, $A = \{(x, y) \in \mathbb{R}^2 ; 0 \le y \le x \le \pi\}$.

(2)
$$\iint_A \frac{x}{x^2 + y^2} dx dy, A = \{(x, y) \in \mathbb{R}^2 ; 0 \le x \le \sqrt{3}, 0 \le y \le x^2\}.$$

10 次の二重積分の値を求めよ.

(1)
$$\iint_A e^{\frac{y}{x}} dx dy, \ A = \{(x, y) \in \mathbb{R}^2 \ ; \ 0 \le x \le 2, \ 0 \le y \le x^2\}.$$

(2)
$$\iint_A xe^{y^2} dxdy$$
, $A = \{(x,y) \in \mathbb{R}^2 ; x \ge 0, x^2 \le y \le 4\}$.

11 次の二重積分の値を求めよ.

(1)
$$\iint_A \sqrt{xy} dx dy$$
, $A = \{(x, y) \in \mathbb{R}^2 ; x \ge y^2, x^2 \le y\}$.

(2)
$$\iint_A \sqrt{x^2 + y} dx dy, A = \{(x, y) \in \mathbb{R}^2 ; x^2 \le y \le 2a^2 - x^2\} (a > 0).$$

12 次の二重積分の値を求めよ.

(1)
$$\iint_A xy dx dy, A = \left\{ (x,y) \in \mathbb{R}^2 \; ; \; x \ge 0, \; y \ge 0, \; \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\} \; (a,b > 0).$$

(2)
$$\iint_A (x^2 + y^2) dx dy, \ A = \left\{ (x, y) \in \mathbb{R}^2 \ ; \ \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\} \ (a, b > 0).$$

13 次の累次積分の積分順序を交換せよ.

(1)
$$\int_a^b \left(\int_a^x f(x,y) dy \right) dx \ (0 < a < b).$$

(2)
$$\int_{a}^{b} \left(\int_{0}^{x} f(x, y) dy \right) dx \ (0 < a < b).$$

14 次の累次積分の積分順序を交換せよ.

(1)
$$\int_0^a \left(\int_{x-a}^{-x+a} f(x,y) dy \right) dx \ (a>0).$$

(2)
$$\int_{-a}^{a} \left(\int_{x^2 - a^2}^{-x^2 + a^2} f(x, y) dy \right) dx \ (a > 0).$$

15 次の累次積分の積分順序を交換せよ.

(1)
$$\int_0^a \left(\int_{-\sqrt{a^2 - x^2}}^{\sqrt{a^2 - x^2}} f(x, y) dy \right) dx \ (a > 0).$$

(2)
$$\int_0^a \left(\int_{\sqrt{a^2 - x^2}}^{x+a} f(x, y) dy \right) dx \ (a > 0).$$

16 次の累次積分の積分順序を交換せよ.

(1)
$$\int_0^a \left(\int_y^{\sqrt{2a^2 - y^2}} f(x, y) dx \right) dy \ (a > 0).$$

(1)
$$\int_0^a \left(\int_y^{\sqrt{2a^2 - y^2}} f(x, y) dx \right) dy \ (a > 0).$$
(2)
$$\int_0^{2a} \left(\int_{\sqrt{2ay - y^2}}^{\sqrt{4a^2 - y^2}} f(x, y) dx \right) dy \ (a > 0).$$

4.3 変数変換公式

• アフィン写像と多重積分

$$\varphi(u,v) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \quad ((u,v) \in \mathbb{R}^2)$$

によって定義するとき、次の問いに答えよ.

- (1) φ の Jacobi 行列とその行列式を求めよ.
- $(2) \varphi$ が \mathbb{R}^2 から \mathbb{R}^2 への全単射であるための A の必要十分条件を求めよ.
- ② $a,b,c,d\in\mathbb{R},\ ad-bc\neq0$ とし、 $A=\{(x,y)\in\mathbb{R}^2\ ;\ (u,v)\in[0,1]^2,\ (x,y)=(au+bv,cu+dv)\}$ とおくとき、次の問いに答えよ.
 - (1) a, b, c, d > 0 のとき, A の概形を図示せよ.
 - (2) Aの面積を求めよ.
- 3 次の二重積分の値を求めよ.

(1)
$$\iint_A (x^2 - y^2)^2 dx dy, \ A = \{(x, y) \in \mathbb{R}^2 \ ; \ |x - y| \le a, \ |x + y| \le b\} \ (a, b > 0).$$

(2)
$$\iint_{A} \frac{\log(x^2 - y^2)}{x^2 - y^2} dx dy, \ A = \{(x, y) \in \mathbb{R}^2 \ ; \ 1 \le x - y \le a, \ 1 \le x + y \le b\} \ (a, b > 1).$$

4 (指定演習問題 7) 次の二重積分の値を求めよ.

(1)
$$\iint_A (x^2 - y^2)e^{xy}dxdy, A = \{(x, y) \in \mathbb{R}^2 : 0 \le x - y \le a, 0 \le x + y \le b\} \ (a, b > 0).$$

(2)
$$\iint_A (x-y)^2 \sin(x^2-y^2) dx dy, \ A = \{(x,y) \in \mathbb{R}^2 \ ; \ 0 \le x-y \le \pi, \ 0 \le x+y \le 1\}.$$

|5| 次の二重積分の値を求めよ.

(1)
$$\iint_{A} (x-y)^{\alpha} (x+y)^{\beta} dx dy, \ A = \{(x,y) \in \mathbb{R}^2 \ ; \ x \ge 0, \ y \ge 0, \ x+y \le 1\} \ (\alpha,\beta > 0).$$

(2)
$$\iint_A (x-y)^{\alpha} (x+y) dx dy, \ A = \{(x,y) \in \mathbb{R}^2 \ ; \ 0 \le x \le 1, \ 0 \le y \le x\} \ (\alpha > 0).$$

• 微分同相写像と多重積分

 $\boxed{6}$ 次の \mathbb{R}^2 上の関数 φ の Jacobi 行列とその行列式を求めよ.

$$(1) \ \varphi(u,v) = \begin{pmatrix} u^2 \\ v^2 \end{pmatrix}.$$

(2)
$$\varphi(u,v) = \begin{pmatrix} u^2 - v^2 \\ 2uv \end{pmatrix}$$
.

(3)
$$\varphi(u,v) = \begin{pmatrix} u(1-v) \\ uv \end{pmatrix}$$
.

(4)
$$\varphi(u,v) = \begin{pmatrix} u(1-v) \\ u(1+v) \end{pmatrix}$$
.

 $\boxed{7}$ $0 < a < b,\, 0 < c < d$ とし、 $A = \{(x,y) \in \mathbb{R}^2 \; ; \; ax \leq y \leq bx, \; c \leq xy \leq d\}$ とおくとき、次の問い に答えよ.

- (1) Aの概形を図示せよ.
- (2) Aの面積を求めよ.

8 次の二重積分の値を求めよ.

(1)
$$\iint_A \log(x^2 + y^2) dx dy, \ A = \{(x, y) \in \mathbb{R}^2 \ ; \ a^2 \le x^2 + y^2 \le b^2\} \ (0 < a < b).$$

(2)
$$\iint_A \sqrt{a^2 - x^2 - y^2} dx dy, A = \{(x, y) \in \mathbb{R}^2 ; x^2 + y^2 \le a^2\} (a > 0).$$

9 次の二重積分の値を求めよ.

(1)
$$\iint_A (x^2 + y^2) dx dy, \ A = \{(x, y) \in \mathbb{R}^2 \ ; \ (x - a)^2 + (y - b)^2 \le c^2\} \ (a, b \in \mathbb{R}, \ c > 0).$$

(2)
$$\iint_{A} \sqrt{a^2 - x^2 - y^2} dx dy, A = \{(x, y) \in \mathbb{R}^2 ; x^2 + y^2 \le ax\} (a > 0).$$

10 次の二重積分の値を求めよ.

$$(1) \ \iint_A xy dx dy, \ A = \left\{ (x,y) \in \mathbb{R}^2 \ ; \ x \geq 0, \ y \geq 0, \ \left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}} \leq 1 \right\} \ (a,b > 0).$$

(2)
$$\iint_A xy dx dy, \ A = \left\{ (x,y) \in \mathbb{R}^2 \ ; \ x \ge 0, \ y \ge 0, \ \left(\frac{x}{a}\right)^{\frac{2}{4}} + \left(\frac{y}{b}\right)^{\frac{2}{4}} \le 1 \right\} \ (a,b > 0).$$

4.4 広義多重積分

• コンパクト近似列

定義. $d \in \{1, 2\}, a \in \mathbb{R}^d, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合とする. 任意の r > 0 に対して

$$B_r(a) \cap (A \setminus \{a\}) \neq \emptyset$$

のとき, a を A の**集積点**と言う.

- 1 $d \in \{1, 2\}, A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合とするとき, 次の (i), (ii) が同値であることを証明せよ.
 - (i) A は **Bolzano-Weierstrass** である. つまり, A の任意の無限部分集合 $B \subseteq A$ に対し, B の ある集積点が存在する.
 - (ii) A は点列コンパクトである.
- 2 $d \in \{1,2\}$, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合とするとき, 次の (i), (ii) が同値であることを証明せよ.
 - (i) A は**全有界**である. つまり, 任意の $\varepsilon > 0$ に対して \mathbb{R}^d のある有限点列 $\{x_1, \dots, x_n\}$ が存在し,

$$A \subseteq B_{\varepsilon}(x_1) \cup \cdots \cup B_{\varepsilon}(x_n)$$

が成り立つ.

(ii) A は有界である.

定義. $d \in \{1, 2\}, \mathcal{U} \subseteq \mathcal{O}$ を \mathbb{R}^d の開集合族, $A \subseteq \mathbb{R}^d$ を \mathbb{R}^d の部分集合とする.

$$A\subseteq\bigcup_{U\in\mathcal{U}}U$$

のとき, U を A の開被覆と言う.

- $\boxed{3}$ $d \in \{1,2\}, A \subset \mathbb{R}^d$ を \mathbb{R}^d の部分集合とするとき, 次の (i), (ii) が同値であることを証明せよ.
 - (i) A は **Heine-Borel** である. つまり, A の任意の開被覆 $U \subseteq \mathcal{O}$ に対して U のある有限集合列 $\{U_1, \dots, U_n\}$ が存在し,

$$A \subseteq U_1 \cup \cdots \cup U_n$$

が成り立つ.

- (ii) A はコンパクトである.
- $\boxed{4}$ $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の部分集合とし, $\mathcal{K}(A)$ の集合列 $\{K_n\}_{n\in\mathbb{N}}$ が次の (i), (ii) を満たすとする.
 - (i) $\forall n \in \mathbb{N}, K_n \subseteq K_{n+1}^i$.
 - (ii) $\bigcup_{n\in\mathbb{N}} K_n = A$.

このとき, 任意の $K \in \mathcal{K}(A)$ に対し, $K \subseteq K_n$ を満たす $n \in \mathbb{N}$ が存在することを証明せよ.

• 非負値関数の広義多重積分

[5] (指定演習問題8)次の広義二重積分が収束することを証明し、その値を求めよ.

(1)
$$\iint_A \frac{1}{(1+x^2+y)^2} dx dy, \ A = \{(x,y) \in \mathbb{R}^2 \ ; \ x \ge 0, \ 0 \le y \le 2x\}.$$

(2)
$$\iint_A \frac{1}{\sqrt{x^2 - y^2}} dx dy, A = \{(x, y) \in \mathbb{R}^2 ; 0 < x \le 1, -x < y < x\}.$$

[6] $a>0,\,b,c\in\mathbb{R},\,ac-b^2>0$ とするとき、次の広義二重積分

$$\iint_{\mathbb{R}^2} e^{-(ax^2 + 2bxy + cy^2)} dx dy$$

が収束することを証明し,

$$\iint_{\mathbb{R}^2} e^{-(ax^2+2bxy+cy^2)} dx dy = \frac{\pi}{\sqrt{ac-b^2}}$$

が成り立つことも証明せよ.

| 7 次の広義二重積分が収束することを証明し, その値を求めよ.

(1)
$$\iint_A e^{\frac{x-y}{x+y}} dx dy, \ A = \{(x,y) \in \mathbb{R}^2 \ ; \ x \ge 0, \ y \ge 0, \ 0 < x+y \le 2\}.$$

(2)
$$\iint_{A} \cos\left(\frac{\pi}{2} \cdot \frac{x-y}{x+y}\right) dx dy, \ A = \{(x,y) \in \mathbb{R}^2 \ ; \ x \ge 0, \ y \ge 0, \ 0 < x+y \le 1\}.$$

[8] (Dirichlet 積分) $A=\{(x,y)\in\mathbb{R}^2\;;\;x>0,\;y>0,\;x+y<1\}$ とおくとき, 次の広義二重積分

$$I(a,b,c) = \iint_A x^{a-1} y^{b-1} (1-x-y)^{c-1} dx dy \quad (a,b,c>0)$$

が収束することを証明し,

$$I(a,b,c) = \frac{\Gamma(a)\Gamma(b)\Gamma(c)}{\Gamma(a+b+c)} \quad (a,b,c>0)$$

が成り立つことも証明せよ.

9 次の広義二重積分が収束するか否かを判定し, 収束すれば, その値を求めよ.

(1)
$$\iint_{[a,\infty)\times[b,\infty)} \frac{1}{(x+y)^{\alpha}} dx dy \ (a,b>0, \ \alpha>0).$$

(2)
$$\iint_{(0,a]\times(0,b]} \frac{1}{(x+y)^{\alpha}} dx dy \ (a,b>0, \ \alpha>0).$$

| 10 | 次の広義二重積分が収束するか否かを判定し, 収束すれば, その値を求めよ.

(1)
$$\iint_A \frac{1}{(x-y)^{\alpha}} dx dy, A = \{(x,y) \in \mathbb{R}^2 ; 0 < x \le 1, 0 \le y < x\} (\alpha > 0).$$

(2)
$$\iint_A \frac{x^{\alpha}}{x^2 + y^2} dx dy, A = \{(x, y) \in \mathbb{R}^2 ; 0 < x \le 1, 0 \le y \le ax \} (a > 0, 0 < \alpha < 2).$$

11 次の広義二重積分が収束するか否かを判定し, 収束すれば, その値を求めよ.

(1)
$$\iint_A \frac{1}{(x^2 + y^2)^{\frac{\alpha}{2}}} dx dy, A = \{(x, y) \in \mathbb{R}^2 ; x^2 + y^2 \ge a^2\} (a > 0, \alpha > 0).$$

(2)
$$\iint_A \frac{1}{(x^2 + y^2)^{\frac{\alpha}{2}}} dx dy, A = \{(x, y) \in \mathbb{R}^2 ; 0 < x^2 + y^2 \le a^2\} (a > 0, \alpha > 0).$$

12 次の広義二重積分が収束するか否かを判定し、収束すれば、その値を求めよ.

(1)
$$\iint_A \frac{\log(x^2 + y^2)}{(x^2 + y^2)^{\frac{\alpha}{2}}} dx dy, \ A = \{(x, y) \in \mathbb{R}^2 \ ; \ x^2 + y^2 \ge a^2\} \ (a > 0, \ \alpha > 0).$$

(2)
$$\iint_{A} \frac{1}{(a^{2}-x^{2}-y^{2})^{\frac{\alpha}{2}}} dx dy, A = \{(x,y) \in \mathbb{R}^{2} ; x^{2}+y^{2} < a^{2}\} (a > 0, \alpha > 0).$$

● 一般の関数の広義多重積分

- 13 $A \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の部分集合, $f: A \to \mathbb{R}$ を A 上の関数で, 次の (i), (ii) を満たすものとする.
 - (i) 任意の $K \in \mathcal{K}(A)$ に対して f^{\pm} は K で可積分である.
 - (ii) $|f| \leq g$ を満たす A 上の非負値広義可積分関数 $g: A \to [0, \infty)$ が存在する.

このとき, f は A で広義可積分であり,

$$\iint_{A} |f(x)| dx \le \iint_{A} g(x) dx$$

が成り立つことを証明せよ.

 $\boxed{14}$ $A = [0,1]^2 \setminus \{(0,0)\}$ とし、A 上の関数 $f: A \to \mathbb{R}$ を

$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2} \quad ((x,y) \in A)$$

によって定義するとき、次の問いに答えよ.

- (1) f^{\pm} を求めよ.
- (2) 次の数列

$$I_n^+ = \iint_{\left[\frac{1}{n},1\right] \times [0,1]} f^+(x,y) dx dy \quad (n \in \mathbb{N}, \ n \ge 1)$$

の一般項を求めよ.

(3) 次の数列

$$I_n^- = \iint_{\left[\frac{1}{n},1\right]\times[0,1]} f^-(x,y) dx dy \quad (n \in \mathbb{N}, \ n \ge 1)$$

の一般項を求めよ.

(4) f が A で広義可積分でないことを証明せよ.

第5章 ベクトル場の微積分法

5.1 ベクトル場とその微分

• ベクトル場の微分

1 $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f, g: U \to \mathbb{R}$ を U 上の全微分可能スカラー場とするとき,

$$\operatorname{grad}(fg)(x) = \operatorname{grad}f(x)g(x) + f(x)\operatorname{grad}g(x) \quad (x \in U)$$

が成り立つことを証明せよ.

② $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}$ を U 上の全微分可能スカラー場, $g: U \to \mathbb{R}^2$ を U 上の全微分可能ベクトル場とするとき,

$$rot(fg)(x) = grad f(x) \times g(x) + f(x)rot g(x) \quad (x \in U)$$

が成り立つことを証明せよ.

③ $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}$ を U 上の全微分可能スカラー場, $g: U \to \mathbb{R}^2$ を U 上の全微分可能ベクトル場とするとき.

$$\operatorname{div}(fg)(x) = \operatorname{grad} f(x) \cdot g(x) + f(x)\operatorname{div} g(x) \quad (x \in U)$$

が成り立つことを証明せよ.

 $\boxed{4} \ A = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}, B = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \in M_2(\mathbb{R}), \ f: \mathbb{R}^2 \to \mathbb{R}^2 \ \text{を} \ \mathbb{R}^2 \ \text{上の全徴分可能ベクトル場} \ a: \mathbb{R}^2 \to \mathbb{R}^2 \ \text{を}$

$$g(u,v) = Af(x,y), \quad \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \quad ((u,v) \in \mathbb{R}^2)$$

によって定義するとき、次のことを証明せよ. ただし、 I は2次単位行列を表す.

- (1) $J_q(u,v) = AJ_f(x,y)B$.
- (2) (発散の正則変換不変性) AB = I = BA ならば, $\operatorname{div} f(x, y) = \operatorname{div} g(u, v)$.

5.2 線積分とその基本性質

● 線積分 I

1 次の線積分の値を求めよ.

(1)
$$\int_C xyd\sigma$$
, C は (a,c) と (b,d) を結ぶ線分 $(a,b,c,d\in\mathbb{R})$.

(2)
$$\int_C xyd\sigma$$
, $C = \{(x,y) \in \mathbb{R}^2 ; (x-a)^2 + (y-b)^2 = r^2\} (a,b \in \mathbb{R}, r > 0).$

2 次の線積分の値を求めよ.

(1)
$$\int_C x^2 d\sigma$$
, $C = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, y = \log x\}$ $(0 < a < b)$.

(2)
$$\int_C y^2 d\sigma$$
, $C = \{(x,y) \in \mathbb{R}^2 ; x^2 + y^2 = r^2\}$ $(r > 0)$.

③ (指定演習問題9)次の線積分の値を求めよ.

(1)
$$\int_C y d\sigma$$
, $C = \{(x, y) \in \mathbb{R}^2 : c \le y \le d, y^2 = 4px\} \ (c, d \in \mathbb{R}, c < d, p > 0).$

(2)
$$\int_C y d\sigma$$
, $C = \{(x,y) \in \mathbb{R}^2 ; y \ge 0, x^{\frac{2}{3}} + y^{\frac{2}{3}} = r^{\frac{2}{3}}\} (r > 0)$.

4 次の線積分の値を求めよ.

(1)
$$\int_C x d\sigma$$
, $C = \{(r(t-\sin t), r(1-\cos t)) ; 0 \le t \le 2\pi\}$ $(r>0)$.

(2)
$$\int_C y d\sigma$$
, $C = \{(r(t-\sin t), r(1-\cos t)) ; 0 \le t \le 2\pi\} \ (r>0)$.

5 次の線積分の値を求めよ.

(1)
$$\int_C \frac{x}{x^2 + y^2} d\sigma$$
, C は $(1, \tan \theta)$ と $(1, \tan \varphi)$ を結ぶ線分 $\left(-\frac{\pi}{2} < \theta, \varphi < \frac{\pi}{2}\right)$.

(2)
$$\int_C \frac{x^2}{x^2 + y^2} d\sigma$$
, $C = \{(x, y) \in \mathbb{R}^2 ; x^2 + y^2 = r^2\}$ $(r > 0)$.

6 次の線積分の値を求めよ.

$$(1)$$
 $\int_C \frac{y}{x^2 + y^2} d\sigma$, C は $(1, \tan \theta)$ と $(1, \tan \varphi)$ を結ぶ線分 $\left(-\frac{\pi}{2} < \theta, \varphi < \frac{\pi}{2}\right)$.

(2)
$$\int_C \frac{y^2}{4x^2 + y^2} d\sigma, C = \{(x, y) \in \mathbb{R}^2 \; ; \; c \le y \le d, \; y^2 = 4px \} \; (c, d \in \mathbb{R}, \; c < d, \; p > 0).$$

7 次の線積分の値を求めよ.

(1)
$$\int_C \frac{1}{x-y} d\sigma$$
, C は $(0,-b)$ と $(a,0)$ を結ぶ線分 $(a,b>0)$.

(2)
$$\int_C \frac{1}{x-y} d\sigma$$
, C は $(0,-b)$ と $(a,-b)$ と $(a,0)$ を結ぶ折線 $(a,b>0)$.

[8] (平均値) $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}$ を U 上の連続スカラー場とし, $\overline{B_r(x)} \subseteq U$ を満たす 任意の $x \in U$, r > 0 に対して

$$\varphi(x,r) = \frac{1}{2\pi r} \int_{\partial B_r(x)} f(y) d\sigma, \quad \psi(x,r) = \frac{1}{\pi r^2} \int_{B_r(x)} f(y) dy$$

とおくとき,次のことを証明せよ.

- (1) 任意の $x \in U$ に対して $\lim_{r \to +0} \varphi(x,r) = f(x)$.
- (2) $\overline{B_r(x)} \subseteq U$ を満たす任意の $x \in U$, r > 0 に対して

$$\psi(x,r) = \frac{2}{r^2} \int_0^r \varphi(x,s) s ds$$

• 線積分 II

9 次の線積分の値を求めよ.

(1)
$$\int_C (x,y) \cdot (dx,dy)$$
, C は $(0,0)$ と (a,b) を結ぶ線分 $(a,b \in \mathbb{R})$.

(2)
$$\int_C (x,y) \cdot (dx,dy)$$
, C は $(0,0)$ と $(a,0)$ と (a,b) を結ぶ折線 $(a,b \in \mathbb{R})$.

10 次の線積分の値を求めよ.

(1)
$$\int_C (-y,x) \cdot (dx,dy), C$$
 は (a,c) と (b,d) を結ぶ線分 $(a,b,c,d \in \mathbb{R}).$

(2)
$$\int_C (-y, x) \cdot (dx, dy), C = \{(x, y) \in \mathbb{R}^2 : c \le y \le d, y^2 = 4px\} \ (c, d \in \mathbb{R}, c < d, p > 0).$$

11 次の線積分の値を求めよ.

(1)
$$\int_C (x^2 - y^2, 2xy) \cdot (dx, dy), C = \{(x, y) \in \mathbb{R}^2 ; y \ge 0, x^2 + y^2 = r^2\} \ (r > 0).$$

(2)
$$\int_C (x^2 - y^2, 2xy) \cdot (dx, dy), C = \{ (r(1 - \cos t)\cos t, r(1 - \cos t)\sin t) ; 0 \le t \le \pi \} \ (r > 0).$$

12 次の線積分の値を求めよ.

(1)
$$\int_C (e^x \cos y, -e^x \sin y) \cdot (dx, dy), C は (-a, 0) と (0, b) と (a, 0) を結ぶ折線 (a, b \in \mathbb{R}).$$

(2)
$$\int_C (e^x \cos y, -e^x \sin y) \cdot (dx, dy), C = \{(x, y) \in \mathbb{R}^2 ; y \le 0, x^2 + y^2 = r^2\} (r > 0).$$

13 次の線積分の値を求めよ.

(1)
$$\int_C \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right) \cdot (dx, dy), C = \{(x, y) \in \mathbb{R}^2 ; x^2 + y^2 = r^2\} \ (r > 0).$$

(2)
$$\int_C \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right) \cdot (dx, dy), C = \{ (x, y) \in \mathbb{R}^2 ; x^2 + y^2 = r^2 \} (r > 0).$$

[14] $C \subseteq \mathbb{R}^2 \setminus \{(0,0)\}$ を $\mathbb{R}^2 \setminus \{(0,0)\}$ 上の向き付けられた C^1 級曲線とし, 任意の $\theta \in \mathbb{R}$ に対して

$$C(\theta) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \; ; \; \begin{pmatrix} u \\ v \end{pmatrix} \in C \right\}$$

とおくとき,次のことを証明せよ.

- (1) 任意の $\theta \in \mathbb{R}$ に対して $l(C(\theta)) = l(C)$.
- (2) 任意の $\theta \in \mathbb{R}$ に対して

$$\int_{C(\theta)} \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right) \cdot (dx, dy) = \int_{C} \left(-\frac{v}{u^2 + v^2}, \frac{u}{u^2 + v^2} \right) \cdot (du, dv)$$

● 線積分 III

15 次の線積分の値を求めよ.

(1)
$$\int_C \frac{x}{x^2 + y^2} dy$$
, C は $(1, \tan \theta)$ と $(1, \tan \varphi)$ を結ぶ線分 $\left(-\frac{\pi}{2} < \theta, \varphi < \frac{\pi}{2}\right)$.

(2)
$$\int_C \frac{x^2}{x^2 + y^2} dx$$
, $C = \{(x, y) \in \mathbb{R}^2 ; y \ge 0, x^2 + y^2 = r^2\} \ (r > 0)$.

16 次の線積分の値を求めよ.

$$(1) \int_C \frac{y}{x^2 + y^2} dy, C は (1, \tan \theta) と (1, \tan \varphi) を結ぶ線分 \left(-\frac{\pi}{2} < \theta, \varphi < \frac{\pi}{2}\right).$$

(2)
$$\int_C \frac{y^2}{x^2 + y^2} dx$$
, $C = \{(x, y) \in \mathbb{R}^2 : c \le y \le d, y^2 = 4px\} \ (c, d \in \mathbb{R}, c < d, p > 0)$.

5.3 Green の定理, Gauss の定理

● 区分的 C^1 級領域

① (微分積分学の基本定理) $a,b\in\mathbb{R},\ a< b,\ \varphi,\psi:[a,b]\to\mathbb{R}$ を [a,b] 上の微分可能関数で, $\forall x\in[a,b],$ $\varphi(x)\leq\psi(x)$ を満たすものとする.

$$c = \min_{a \le x \le b} \varphi(x), \quad d = \max_{a \le x \le b} \psi(x)$$

とおき, $f:[a,b] \times [c,d] \to \mathbb{R}$ を $[a,b] \times [c,d]$ 上の C^1 級関数とするとき,

$$\frac{d}{dx}\left(\int_{\varphi(x)}^{\psi(x)} f(x,y)dy\right) = \int_{\varphi(x)}^{\psi(x)} \frac{\partial f}{\partial x}(x,y)dy + f(x,\psi(x))\psi'(x) - f(x,\varphi(x))\varphi'(x) \quad (a \le x \le b)$$

が成り立つことを証明せよ.

● Green の定理

 $\begin{bmatrix} 2 \end{bmatrix} A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R})$ とし、 \mathbb{R}^2 上のベクトル場 $f: \mathbb{R}^2 \to \mathbb{R}^2$ を

$$f(x,y) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \quad ((x,y) \in \mathbb{R}^2)$$

によって定義するとき, $\operatorname{rot} f = 0$, $\operatorname{div} f = 0$ であるための A の必要十分条件をそれぞれ求めよ.

 $\boxed{3}$ \mathbb{R}^2 上のベクトル場 $f: \mathbb{R}^2 \to \mathbb{R}^2$ を

$$f(x,y) = (x^2 - y^2, 2xy) \quad ((x,y) \in \mathbb{R}^2)$$

によって定義するとき,次の問いに答えよ.

- (1) rot f を求めよ.
- (2) $a, b \in \mathbb{R}$, a < b, $c, d \in \mathbb{R}$, c < d, $C \subseteq \mathbb{R}^2$ を $[a, b] \times [c, d]$ の周とするとき, 次の線積分

$$\int_C f(x,y) \cdot (dx,dy)$$

の値を求めよ.

 $\boxed{4}$ \mathbb{R}^2 上のベクトル場 $f: \mathbb{R}^2 \to \mathbb{R}^2$ を

$$f(x,y) = (e^x \cos y, -e^x \sin y) \quad ((x,y) \in \mathbb{R}^2)$$

によって定義するとき,次の問いに答えよ.

- (1) rot f を求めよ.
- (2) $C \subseteq \mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた区分的 C^1 級単純閉曲線とするとき, 次の線積分

$$\int_C f(x,y) \cdot (dx,dy)$$

の値を求めよ.

 $\boxed{5}$ $D = \{(x,y) \in \mathbb{R}^2 \; ; \; x > 0\}$ とし、D 上のベクトル場 $f: D \to \mathbb{R}^2$ を

$$f(x,y) = \left(\log \sqrt{x^2 + y^2}, \arctan \frac{y}{x}\right) \quad ((x,y) \in D)$$

によって定義するとき、次の問いに答えよ.

- (1) rot f を求めよ.
- (2) $0 < a < b, c, d \in \mathbb{R}, c < d, C \subseteq \mathbb{R}^2$ を $[a,b] \times [c,d]$ の周とするとき, 次の線積分

$$\int_C f(x,y) \cdot (dx,dy)$$

の値を求めよ.

6 $\mathbb{R}^2 \setminus \{(0,0)\}$ 上のベクトル場 $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2$ を

$$f(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right) \quad ((x,y) \in \mathbb{R}^2, \ (x,y) \neq (0,0))$$

によって定義するとき,次の問いに答えよ.

- (1) rot f を求めよ.
- (2) $C \subseteq \mathbb{R}^2 \setminus \{(0,0)\}$ を $\mathbb{R}^2 \setminus \{(0,0)\}$ 上の向き付けられた区分的 C^1 級単純閉曲線とするとき, 次の線積分

$$\int_C f(x,y) \cdot (dx,dy)$$

の値を求めよ.

 $\boxed{7}$ $\mathbb{R}^2 \setminus \{(0,0)\}$ 上のベクトル場 $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2$ を

$$f(x,y) = \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right) \quad ((x,y) \in \mathbb{R}^2, \ (x,y) \neq (0,0))$$

によって定義するとき、次の問いに答えよ.

- (1) rot f を求めよ.
- (2) $C \subseteq \mathbb{R}^2 \setminus \{(0,0)\}$ を $\mathbb{R}^2 \setminus \{(0,0)\}$ 上の向き付けられた区分的 C^1 級単純閉曲線とするとき, 次の線積分

$$\int_C f(x,y) \cdot (dx,dy)$$

の値を求めよ.

- 图 (スーパー楕円) a,b>0 とし, $D=\left\{(x,y)\in\mathbb{R}^2\; ;\; \left(\frac{x}{a}\right)^{\frac{2}{3}}+\left(\frac{y}{b}\right)^{\frac{2}{3}}<1
 ight\}$ とおくとき,次の問いに答えよ.
 - (1) Dの概形を図示せよ.
 - (2) Dの面積を求めよ.
- [9] (スーパー楕円) a,b>0 とし, $D=\left\{(x,y)\in\mathbb{R}^2\; ;\; \left(\frac{x}{a}\right)^{\frac{2}{4}}+\left(\frac{y}{b}\right)^{\frac{2}{4}}<1\right\}$ とおくとき,次の問いに答えよ.
 - (1) Dの概形を図示せよ.
 - (2) Dの面積を求めよ.

• Gauss の定理

[10] (転置) $a,b \in \mathbb{R}, \ a < b, \ x : [a,b] \to \mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^1 級パラメータ曲線とし、 $C = \{x(t) ; \ a \le t \le b\}$ とおく. $A \in M_2(\mathbb{R}), \ f : C \to \mathbb{R}^2$ を C 上の連続ベクトル場とするとき、

$$\int_{C} Af(x) \cdot dx = \int_{C} f \cdot {}^{t}A\tau(x)d\sigma$$

が成り立つことを証明せよ.

[11] (Green の公式) $D \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の区分的 C^1 級有界領域, $f: \overline{D} \to \mathbb{R}$ を \overline{D} 上の C^2 級スカラー場とするとき、

$$\iint_{D} \Delta f(x) dx = \int_{\partial D} \frac{\partial f}{\partial \nu}(x) d\sigma$$

が成り立つことを証明せよ.

[12] (Green の公式) $D\subseteq \mathbb{R}^2$ を \mathbb{R}^2 の区分的 C^1 級有界領域, $f,g:\overline{D}\to\mathbb{R}$ を \overline{D} 上の C^2 級スカラー場とするとき,

$$\iint_D (f(x)\Delta g(x) - \Delta f(x)g(x))dx = \int_{\partial D} \left(f(x)\frac{\partial g}{\partial \nu}(x) - \frac{\partial f}{\partial \nu}(x)g(x) \right) d\sigma$$

が成り立つことを証明せよ.

[13] (Green の公式) $D \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の区分的 C^1 級有界領域, $f: \overline{D} \to \mathbb{R}$ を \overline{D} 上の C^2 級スカラー場とする. $\mathbb{R}^2 \setminus \{0\}$ 上の関数 $E: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ を

$$E(x) = \frac{1}{2\pi} \log \frac{1}{|x|} \quad (x \in \mathbb{R}^2, \ x \neq 0)$$

によって定義するとき,

$$f(x) = -\iint_D E(x - y)\Delta f(y)dy + \int_{\partial D} \left(E(x - y)\frac{\partial f}{\partial \nu}(y) - \frac{\partial E}{\partial \nu}(x - y)f(y) \right) d\sigma \quad (x \in D)$$

が成り立つことを証明せよ.

[14] (平均値) $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}$ を U 上の C^2 級スカラー場とし, $\overline{B_r(x)} \subseteq U$ を満た す任意の $x \in U$, r > 0 に対して

$$\varphi(x,r) = \frac{1}{2\pi r} \int_{\partial B_r(x)} f(y) d\sigma$$

とおくとき、次のことを証明せよ.

- (1) 任意の $x \in U$ に対して $\lim_{r \to +0} \varphi(x,r) = f(x)$.
- (2) $\overline{B_r(x)} \subseteq U$ を満たす任意の $x \in U, r > 0$ に対して

$$\frac{\partial \varphi}{\partial r}(x,r) = \frac{1}{2\pi r} \iint_{B_r(x)} \Delta f(y) dy$$

- [15] (平均値の定理) $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f:U \to \mathbb{R}$ を U 上の C^2 級スカラー場とするとき, 次の (i), (ii) が同値であることを証明せよ.
 - (i) $-\Delta f \leq 0$. つまり, $\forall x \in U$, $-\Delta f(x) \leq 0$.
 - (ii) $\overline{B_r(x)} \subseteq U$ を満たす任意の $x \in U, r > 0$ に対して

$$f(x) \le \frac{1}{2\pi r} \int_{\partial B_r(x)} f(y) d\sigma$$

が成り立つ.

- [16] (平均値の定理) $U \subseteq \mathbb{R}^2$ を \mathbb{R}^2 の開集合, $f: U \to \mathbb{R}$ を U 上の C^2 級スカラー場とするとき, 次の (i), (ii) が同値であることを証明せよ.
 - (i) $-\Delta f \ge 0$. $\supset \sharp \mathfrak{h}, \forall x \in U, -\Delta f(x) \ge 0$.
 - (ii) $\overline{B_r(x)} \subseteq U$ を満たす任意の $x \in U, r > 0$ に対して

$$f(x) \ge \frac{1}{2\pi r} \int_{\partial B_r(x)} f(y) d\sigma$$

5.4 スカラー・ポテンシャル

● スカラー・ポテンシャルの存在条件

- [1] $a, b \in \mathbb{R}, a < b, x : [a, b] \to \mathbb{R}^2$ を \mathbb{R}^2 上の向き付けられた C^2 級曲線とし, $C = \{x(t) ; a \le t \le b\}$, v = |x'| とおく. m > 0, $f : C \to \mathbb{R}^2$ を C 上の連続ベクトル場とするとき, 次のことを証明せよ.
 - (1) (Newton の運動方程式) f が

$$f(x(t)) = mx''(t) \quad (a \le t \le b)$$

を満たせば.

$$\int_{C} f(x) \cdot dx = \frac{1}{2} mv(b)^{2} - \frac{1}{2} mv(a)^{2}$$

が成り立つ.

(2) (保存力場) $f = -\operatorname{grad}\varphi$ を満たす $C \perp O$ C^1 級スカラー場 $\varphi : C \to \mathbb{R}$ が存在すれば、

$$\int_C f(x) \cdot dx = f(x(b)) - f(x(a))$$

が成り立つ.

(3) (力学的エネルギー保存則) [a,b] 上のスカラー場 $E:[a,b] \to \mathbb{R}$ を

$$E(t) = \frac{1}{2}mv(t)^2 + f(x(t)) \quad (a \le t \le b)$$

によって定義するとき, f が (1), (2) を満たせば, E(a) = E(b) が成り立つ.

2 $\mathbb{R}^2 \setminus \{(0,0)\}$ 上のベクトル場 $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2$ を

$$f(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right) \quad ((x,y) \in \mathbb{R}^2, \ (x,y) \neq (0,0))$$

によって定義するとき,次の問いに答えよ.

- (1) rot f を求めよ.
- (2) fのスカラー・ポテンシャルが存在するか否かを判定し、存在すれば、それを一つ求めよ.
- 「3 $\mathbb{R}^2\setminus\{(0,0)\}$ 上のベクトル場 $f:\mathbb{R}^2\setminus\{(0,0)\}\to\mathbb{R}^2$ を

$$f(x,y) = \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right) \quad ((x,y) \in \mathbb{R}^2, \ (x,y) \neq (0,0))$$

によって定義するとき、次の問いに答えよ.

- (1) rot f を求めよ.
- (2) ƒのスカラー・ポテンシャルが存在するか否かを判定し、存在すれば、それを一つ求めよ.

● Poincaré の補題

[4] (指定演習問題 10) $D \subseteq \mathbb{R}^2$ を \mathbb{R}^2 のホモトープな単連結領域, $u:D \to \mathbb{R}$ を D 上の C^2 級関数とするとき, u が D で調和ならば、つまり、

$$\Delta u = 0$$

を満たせば、次の (i), (ii) を満たす D 上の C^2 級関数 $v:D\to \mathbb{R}$ が存在することを証明せよ.

(i) (Cauchy-Riemann 方程式) u, v は D で

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$

を満たす.

(ii) v は D で調和である.

【補足】v を u の共役調和関数と言う.

5 \mathbb{R}^2 上の関数 $u: \mathbb{R}^2 \to \mathbb{R}$ を

$$u(x,y) = x^2 - y^2 \quad ((x,y) \in \mathbb{R}^2)$$

によって定義するとき、次の問いに答えよ.

- (1) u が \mathbb{R}^2 で調和であることを証明し, u の共役調和関数 $v:\mathbb{R}^2\to\mathbb{R}$ を一つ求めよ.
- (2) (u, v) のスカラー・ポテンシャルが存在するか否かを判定し、存在すれば、それを一つ求めよ.
- 6 \mathbb{R}^2 上の関数 $u:\mathbb{R}^2 \to \mathbb{R}$ を

$$u(x,y) = e^x \cos y \quad ((x,y) \in \mathbb{R}^2)$$

によって定義するとき、次の問いに答えよ.

- (1) u が \mathbb{R}^2 で調和であることを証明し, u の共役調和関数 $v:\mathbb{R}^2\to\mathbb{R}$ を一つ求めよ.
- (2) (u, v) のスカラー・ポテンシャルが存在するか否かを判定し、存在すれば、それを一つ求めよ.

$$u(x,y) = \log \sqrt{x^2 + y^2} \quad ((x,y) \in D)$$

によって定義するとき、次の問いに答えよ.

- (1) u が D で調和であることを証明し, u の共役調和関数 $v:D\to \mathbb{R}$ を一つ求めよ.
- (2) (u, v) のスカラー・ポテンシャルが存在するか否かを判定し、存在すれば、それを一つ求めよ、

関連図書

- [1] 齋藤 正彦, 微分積分学, 東京図書, 2006年.
- [2] 杉浦 光夫, 解析入門 I(基礎数学), 東京大学出版会, 1980年.
- [3] 杉浦 光夫, 解析入門 II(基礎数学), 東京大学出版会, 1985年.