微分積分学I講義ノート

柿澤 亮平

島根大学学術研究院 教育学系 数学科教育専攻

目次

第0章	論理と集合	1
0.1	命題論理, 述語論理	1
0.2	集合, 写像	6
0.3	自然数,整数,有理数, 実数	12
第1章		18
1.1	指数関数, 対数関数, 冪関数	18
1.2	三角関数, 逆三角関数	22
1.3	有理関数	28
第2章	数列の極限と実数体の連続性	32
2.1	実数体の順序完備性	32
2.2	数列の極限	35
2.3	実数体の Cauchy 完備性	39
第3章	関数の極限と連続関数	46
3.1	関数の極限	46
3.2	連続関数, 一様連続関数, 半連続関数	54
3.3	中間値の定理, 逆関数の定理, 最大値の定理	58
第4章	導関数と平均値の定理	61
4.1	導関数と接線	61
4.2	平均値の定理	65
4.3	de l'Hôpital の法則	66
第5章	高階導関数と Taylor の定理	68
	• • • • • • • • • • • • • • • • • • • •	
5.1	高階導関数と関数の極大・極小	68
5.1 5.2	· · · · · · · · · · · · · · · · · · ·	

第0章 論理と集合

0.1 命題論理, 述語論理

• 命題論理

定義 0.1.1. *P*, *Q* を命題とする.

- (1) (論理同値) "P の真偽と Q の真偽は一致する" という命題を $P \Leftrightarrow Q$ で表す.
- (2) (論理否定) "P でない" という命題を $\neg P$ で表す.

命題 0.1.1 (二重否定の法則). P を命題とすると, 次の命題

$$\neg \neg P \Leftrightarrow P$$

は真である.

証明. (真理表)

P	$\neg P$	$\neg \neg P$	$\neg\neg P \Leftrightarrow P$
真	偽	真	草
偽	真	偽	真

定義 0.1.2. *P*, *Q* を命題とする.

- (1) (論理和) "P または Q" という命題を $P \lor Q$ で表す.
- (2) (論理積) "Pかつ Q" という命題を $P \wedge Q$ で表す.

P	Q	$P \lor Q$	$P \wedge Q$
真	真	真	真
真	偽	真	偽
偽	真	真	偽
偽	偽	偽	偽

命題 0.1.2. *P* を命題とする.

- (1) $P \vee \neg P$ は真である.
- (2) $P \land \neg P$ は偽である.

証明. (真理表)

P	$\neg P$	$P \vee \neg P$	$P \wedge \neg P$
真	偽	真	偽
偽	真	真	偽

命題 0.1.3. *P*, *Q*, *R* を命題とすると, 次の命題は真である.

- (1) $P \lor P \Leftrightarrow P$.
- (2) $P \lor Q \Leftrightarrow Q \lor P$.
- (3) $(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$.
- (4) $(P \lor Q) \land R \Leftrightarrow (P \land R) \lor (Q \land R)$.

証明. 省略 (真理表).

命題 0.1.4. *P*, *Q*, *R* を命題とすると, 次の命題は真である.

- (1) $P \wedge P \Leftrightarrow P$.
- (2) $P \wedge Q \Leftrightarrow Q \wedge P$.
- (3) $(P \wedge Q) \wedge R \Leftrightarrow P \wedge (Q \wedge R)$.
- (4) $(P \land Q) \lor R \Leftrightarrow (P \lor R) \land (Q \lor R)$.

証明. 省略 (真理表).

命題 0.1.5 (de Morgan の法則). *P*, *Q* を命題とすると, 次の命題は真である.

- (1) $\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$.
- (2) $\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$.

証明. 省略 (真理表).

定義 0.1.3. *P*, *Q* を命題とする.

- (1) (論理包含) $\neg P \lor Q$ という命題を $P \Rightarrow Q$ で表す.
- (2) (論理包含) $P \vee \neg Q$ という命題を $P \Leftarrow Q$ で表す.

命題 0.1.6 (論理同値の法則). P,Q を命題とすると,次の命題

$$(P \Rightarrow Q) \land (P \Leftarrow Q) \Leftrightarrow (P \Leftrightarrow Q)$$

は真である.

証明. (真理表)

P	Q	$\neg P$	$\neg Q$	$P \Rightarrow Q$	$P \Leftarrow Q$	$P \Leftrightarrow Q$	
真	真	偽	偽	真	真	真	
真	偽	偽	真	偽	真	偽	
偽	真	真	偽	真	偽	偽	
偽	偽	真	真	真	真	真	

注意. P,Q を命題とするとき, P が偽ならば, 次の命題

$$P \Rightarrow Q$$

は(形式的に)真である.

定理 0.1.1 (モーダス・ポーネンス). P, Q を命題とすると, 次の命題

$$P \wedge (P \Rightarrow Q) \Rightarrow Q$$

は真である.

証明.
$$(P \land (P \Rightarrow Q) \Rightarrow Q) \Leftrightarrow \neg (P \land (P \Rightarrow Q)) \lor Q$$

 $\Leftrightarrow \neg P \lor \neg (P \Rightarrow Q) \lor Q$
 $\Leftrightarrow (\neg P \lor Q) \lor \neg (P \Rightarrow Q)$
 $\Leftrightarrow (P \Rightarrow Q) \lor \neg (P \Rightarrow Q).$

定理 0.1.2 (三段論法). P, Q, R を命題とすると, 次の命題

$$(P \Rightarrow Q) \land (Q \Rightarrow R) \Rightarrow (P \Rightarrow R)$$

は真である.

証明.
$$((P\Rightarrow Q)\land (Q\Rightarrow R)\Rightarrow (P\Rightarrow R))\Leftrightarrow \neg((\neg P\lor Q)\land (\neg Q\lor R))\lor (\neg P\lor R)$$
 $\Leftrightarrow (P\land \neg Q)\lor (Q\land \neg R)\lor \neg P\lor R$ $\Leftrightarrow ((P\land \neg Q)\lor \neg P)\lor ((Q\land \neg R)\lor R)$ $\Leftrightarrow ((P\lor \neg P)\land (\neg P\lor \neg Q))\lor ((Q\lor R)\land (R\lor \neg R))$ $\Leftrightarrow \neg P\lor \neg Q\lor Q\lor R$ $\Leftrightarrow (Q\lor \neg Q)\lor (\neg P\lor R)$ $\Leftrightarrow (Q\lor \neg Q)\lor (P\Rightarrow R)$ $\Leftrightarrow Q\lor \neg Q.$

定理 0.1.3 (背理法). P, Q を命題とすると, 次の命題

$$(\neg Q \Rightarrow P \land \neg P) \Rightarrow Q$$

は真である.

証明.
$$((\neg Q \Rightarrow P \land \neg P) \Rightarrow Q) \Leftrightarrow \neg (\neg \neg Q \lor (P \land \neg P)) \lor Q \\ \Leftrightarrow (\neg Q \land \neg (P \land \neg P)) \lor Q \\ \Leftrightarrow (\neg Q \land (\neg P \lor P)) \lor Q \\ \Leftrightarrow ((P \lor \neg P) \land \neg Q) \lor Q \\ \Leftrightarrow \neg Q \lor Q \\ \Leftrightarrow Q \lor \neg Q.$$

定理 0.1.4 (対偶の法則). P, Q を命題とすると, 次の命題

$$(P \Rightarrow Q) \Leftrightarrow (\neg P \Leftarrow \neg Q)$$

は真である.

証明.
$$(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$$
 $\Leftrightarrow (\neg P \lor \neg \neg Q)$ $\Leftrightarrow ((\neg P) \lor \neg (\neg Q))$ $\Leftrightarrow (\neg P \Leftarrow \neg Q)$.

• 述語論理

定義 0.1.4. P(x) を変数 x についての命題とする.

- (1) (特称記号) "ある変数 x が存在して P(x)" という命題を $\exists x, P(x)$ で表す.
- (2) (全称記号) "任意の変数 x に対して P(x)" という命題を $\forall x, P(x)$ で表す.

注意. "ある変数 x が一意に存在して P(x)" という命題を $\exists !x, P(x)$ で表すことがある.

命題 0.1.7 (de Morgan の法則). P(x) を変数 x についての命題とすると, 次の命題は真である.

- (1) $\neg(\exists x, P(x)) \Leftrightarrow \forall x, \neg P(x)$.
- (2) $\neg(\forall x, P(x)) \Leftrightarrow \exists x, \neg P(x).$

証明. 省略(論理公理,推論規則,命題 0.1.1).

命題 0.1.8. P(x), Q(x) を変数 x についての命題とすると, 次の命題は真である.

- (1) $\exists x, P(x) \lor Q(x) \Leftrightarrow (\exists x, P(x)) \lor (\exists x, Q(x)).$
- (2) $\forall x, P(x) \land Q(x) \Leftrightarrow (\forall x, P(x)) \land (\forall x, Q(x)).$

証明. 省略(論理公理,変数条件,命題 0.1.1).

命題 0.1.9. P(x,y) を変数 (x,y) についての命題とすると, 次の命題は真である.

- (1) $\exists x, \exists y, P(x,y) \Leftrightarrow \exists y, \exists x, P(x,y).$
- (2) $\forall x, \forall y, P(x, y) \Leftrightarrow \forall y, \forall x, P(x, y).$

証明. 省略(論理公理,変数条件,命題 0.1.1).

命題 0.1.10. P(x,y) を変数 (x,y) についての命題とすると, 次の命題

$$\exists y, \forall x, P(x,y) \Rightarrow \forall x, \exists y, P(x,y)$$

は真である.

証明. 省略(論理公理,変数条件).

注意. P(x,y) を変数 (x,y) についての命題とするとき, 次の命題

$$\exists y, \forall x, P(x,y) \Leftarrow \forall x, \exists y, P(x,y)$$

が真であるとは限らない.

0.2 集合, 写像

集合

定義 0.2.1. A, B を集合とする.

- (1) 変数 x が A の元であることを $x \in A$ と書く.
- (2) 変数 x が A の元でないことを $x \notin A$ と書く.
- $(3) \forall x, (x \in A \Leftrightarrow x \in B)$ のことを A = B と書く.

定義 0.2.2. A, B を集合とする.

- $(1) \forall x, (x \in A \Rightarrow x \in B)$ のことを $A \subseteq B$ と書き, A を B の部分集合と言う.
- $(2) \forall x, (x \in A \leftarrow x \in B)$ のことを $A \supseteq B$ と書き, B を A の部分集合と言う.

定義 0.2.3. *A*, *B* を集合とする.

- (1) $(A \subseteq B) \land (A \ne B)$ のことを $A \subseteq B$ と書き, A を B の真部分集合と言う.
- (2) $(A \supseteq B) \land (A \ne B)$ のことを $A \supseteq B$ と書き, B を A の真部分集合と言う.

注意. A, B を集合とすると, 次の命題

$$(A \subseteq B) \land (A \supseteq B) \Leftrightarrow (A = B)$$

は真である.

定義 0.2.4. P(x) を変数 x についての命題とする.

- (1) P(x) が真である変数 x 全体の集合を $\{x; P(x)\}$ と書く.
- (2) $\forall x, x \notin \emptyset$ が真である集合 \emptyset を**空集合**と言う.

注意. A を集合とすると, 次の命題

 $\emptyset \subseteq A$

は(形式的に)真である.

定義 0.2.5. *A*, *B* を集合とする.

- (1) $A \cup B = \{x \; ; \; (x \in A) \lor (x \in B)\}$ を $A \land B$ の和または合併と言う.
- (2) $A \cap B = \{x \; ; \; (x \in A) \land (x \in B)\}$ を $A \land B$ の積または共通部分と言う.

例. $A = \{a, b\}, B = \{b, c\}$ とおくと,

$$A \cup B = \{a, b, c\}, \quad A \cap B = \{b\}$$

が成り立つ.

命題 0.2.1. A, B, C を集合とする.

- (1) $A \cup A = A$.
- (2) $A \cup B = B \cup A$.
- $(3) (A \cup B) \cup C = A \cup (B \cup C).$
- $(4) (A \cup B) \cap C = (A \cap C) \cup (B \cap C).$

証明. 省略 (命題 0.1.3).

命題 0.2.2. A, B, C を集合とする.

- (1) $A \cap A = A$.
- (2) $A \cap B = B \cap A$.
- $(3) (A \cap B) \cap C = A \cap (B \cap C).$
- $(4) (A \cap B) \cup C = (A \cup C) \cap (B \cup C).$

証明. 省略 (命題 0.1.4).

定義 0.2.6. *A*, *B* を集合とする.

- (1) $A \setminus B = \{x \; ; \; (x \in A) \land (x \notin B)\}$ を $A \land B \in \mathbb{Z}$ を $B \in \mathbb{Z}$ る $B \in$
- (2) $A \supseteq B$ のとき, $B^c = A \setminus B$ を A に対する B の補集合と言う.

例. $A = \{a, b\}, B = \{b, c\}$ とおくと,

$$A \setminus B = \{a\}, \quad B \setminus A = \{c\}$$

が成り立つ.

命題 0.2.3. X を集合, $*^c$ を X に対する * の補集合, $A, B \subseteq X$ を X の部分集合とする.

- (1) $X^c = \emptyset, \, \emptyset^c = X.$
- (2) $A^{cc} = A$.
- (3) $A \cup A^c = X$, $A \cap A^c = \emptyset$.
- (4) $A \subseteq B \Leftrightarrow A^c \supseteq B^c$.

証明. 省略 (命題 0.1.1, 命題 0.1.2, 定理 0.1.4).

命題 0.2.4 (de Morgan の法則). X を集合, $*^c$ を X に対する * の補集合, $A,B\subseteq X$ を X の部分集合とする.

- $(1) (A \cup B)^c = A^c \cap B^c.$
- $(2) (A \cap B)^c = A^c \cup B^c.$

証明. 省略 (命題 0.1.5).

• 集合族

定義 0.2.7. X を集合とする.

- (1) 集合の集合を集合族と言う.
- (2) X の部分集合全体の集合を $\mathcal{P}(X) = \{A : A \subset X\}$ と書き, $\mathcal{P}(X)$ を X の**冪集合**と言う.

例. $X = \{a, b, c\}$ とおくと,

$$\mathcal{P}(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$$

が成り立つ.

定義 0.2.8. *A* を集合族とする.

- (1) $\bigcup_{A \in \mathcal{A}} A = \{x \; ; \; \exists A \in \mathcal{A}, \; x \in A\}$ を \mathcal{A} の和または合併と言う.
- $(2) \bigcap_{A\in\mathcal{A}}A=\{x\;;\;\forall A\in\mathcal{A},\;x\in A\}\;\mathcal{E}\;\mathcal{A}\;\mathcal{O}$ 積または共通部分と言う.

注意. I を集合とし, $A = \{A_i ; i \in I\}$ とおくとき,

$$\bigcup_{A \in \mathcal{A}} A = \bigcup_{i \in I} A_i, \quad \bigcap_{A \in \mathcal{A}} A = \bigcap_{i \in I} A_i$$

と書くと,

$$\bigcup_{i \in I} A_i = \{x \; ; \; \exists i \in I, \; x \in A_i\}, \quad \bigcap_{i \in I} A_i = \{x \; ; \; \forall i \in I, \; x \in A_i\}$$

が成り立つ.

命題 0.2.5. A を集合族, B を集合とする.

(1)
$$\left(\bigcup_{A \in \mathcal{A}} A\right) \cap B = \bigcup_{A \in \mathcal{A}} (A \cap B).$$

(2)
$$\left(\bigcap_{A\in\mathcal{A}}A\right)\cup B=\bigcap_{A\in\mathcal{A}}(A\cup B).$$

証明. 省略 (命題 0.1.8).

命題 0.2.6 (de Morgan の法則). X を集合, $*^c$ を X に対する * の補集合, $\mathcal{A} \subseteq \mathcal{P}(X)$ を X の部分集合族とする.

$$(1) \left(\bigcup_{A \in \mathcal{A}} A\right)^c = \bigcap_{A \in \mathcal{A}} A^c.$$

(2)
$$\left(\bigcap_{A \in A} A\right)^c = \bigcup_{A \in A} A^c$$
.

証明. 省略 (命題 0.1.7).

写像

定義 0.2.9. *X*, *Y* を集合とする.

- (1) $X \times Y = \{(x,y) ; (x \in X) \land (y \in Y)\}$ を X と Y の直積と言い, (x,y) を x と y の組と言う.
- (2) $X \times Y$ の部分集合を X から Y への対応と言う.

例. $X = \{a, b\}, Y = \{c, d\}$ とおくと,

$$X \times Y = \{(a, c), (a, d), (b, c), (b, d)\}$$

が成り立つ.

定義 0.2.10. X, Y を集合, $R \subseteq X \times Y$ を $\forall x \in X, \exists ! y \in Y, (x, y) \in R$ を満たす X から Y への対応とする.

(1) 任意の $x \in X$ に対し、

$$(x,y) \in R$$

を満たす $y \in Y$ を y = f(x) と書き, $f: X \to Y$ を X から Y への**写像**と言う.

(2) (1) のとき, X を f の定義域と言い, Y を f の値域と言う.

例. $X = \{a, b\}, Y = \{c, d\}$ とおくと, $R = \{(a, c), (b, d)\}, つまり,$

$$f(a) = c, \quad f(b) = d$$

はXからYへの写像である.

定義 0.2.11. X, Y を集合, $f: X \to Y$ を X から Y への写像とする.

- (1) 任意の $A \subseteq X$ に対し, $f(A) = \{f(x) ; x \in A\}$ を f による A の像と言う.
- (2) 任意の $B \subseteq Y$ に対し, $f^{-1}(B) = \{x \in X ; f(x) \in B\}$ を f による B の逆像と言う.

例. $X = \{a, b\}, Y = \{c, d\}$ とおくと, $R = \{(a, c), (b, c)\}, つまり,$

$$f(a) = c, \quad f(b) = c$$

はXからYへの写像であり、

$$f(\{a\}) = \{c\}, \quad f(\{b\}) = \{c\}, \quad f(\{a,b\}) = \{c\}, \quad f(\emptyset) = \emptyset,$$

$$f^{-1}(\{c\}) = \{a, b\}, \quad f^{-1}(\{d\}) = \emptyset, \quad f^{-1}(\{c, d\}) = \{a, b\}, \quad f^{-1}(\emptyset) = \emptyset$$

が成り立つ.

定義 0.2.12. X, Y を集合, $f, g: X \to Y$ を X から Y への写像とする. f と g が等しいとは,

$$\forall x \in X, \ f(x) = q(x)$$

が成り立つことを言う. このとき, f = gと書く.

定義 0.2.13. X, Y を集合, $f: X \to Y$ を X から Y への写像とする.

- (1) f が**全射**であるとは, f が $\forall y \in Y$, $\exists x \in X$, f(x) = y を満たすことを言う.
- (2) f が**単射**であるとは, f が $\forall x, x' \in X$, $(f(x) = f(x') \Rightarrow x = x')$ を満たすことを言う.
- (3) f が**全単射**であるとは, f が全射かつ単射であることを言う.

例. $X = \{a, b\}, Y = \{c\}$ とおくと, $R = \{(a, c), (b, c)\},$ つまり,

$$f(a) = c, \quad f(b) = c$$

はXからYへの全射であるが、単射でない.

例. $X = \{a\}, Y = \{b, c\}$ とおくと, $R = \{(a, b)\}$, つまり,

$$f(a) = b$$

はXからYへの単射であるが、全射でない.

注意. X, Y を集合, $f: X \to Y$ を X から Y への全単射とすると, f は $\forall y \in Y, \exists! x \in X, f(x) = y$ を満たす.

定義 0.2.14. X, Y を集合, $f: X \to Y$ を X から Y への全単射とする. 任意の $y \in Y$ に対し,

$$f(x) = y$$

を満たす $x \in X$ を $x = f^{-1}(y)$ と書き, $f^{-1}: Y \to X$ を f の**逆**と言う.

例. $X = \{a, b\}, Y = \{c, d\}$ とおくと, $R = \{(a, d), (b, c)\}, つまり,$

$$f(a) = d, \quad f(b) = c$$

はXからYへの全単射であり、

$$f^{-1}(c) = b, \quad f^{-1}(d) = a$$

が成り立つ.

定義 0.2.15. X, Y, Z を集合, $f: X \to Y, g: Y \to Z$ をそれぞれ X から Y, Y から Z への写像とする.

$$g \circ f(x) = g(f(x)) \quad (x \in X)$$

によって定義される $q \circ f: X \to Z$ を f と q の**合成**と言う.

例. $X = \{a, b\}$ とおくと、 $R = \{(a, a), (b, a)\}$ 、 $S = \{(a, b), (b, b)\}$ 、つまり、

$$f(a) = a, \quad f(b) = a, \quad g(a) = b, \quad g(b) = b$$

はX上の変換であり、

$$g \circ f(a) = b$$
, $g \circ f(b) = b$, $f \circ g(a) = a$, $f \circ g(b) = a$

が成り立つ.

• 選択公理

定義 0.2.16. A を集合族とする.

$$\prod_{A \in \mathcal{A}} A = \left\{ f : \mathcal{A} \to \bigcup_{A \in \mathcal{A}} A \; ; \; \forall A \in \mathcal{A}, \; f(A) \in A \right\}$$

を A の**直積**と言う.

注意. I を集合とし, $A = \{A_i ; i \in I\}$ とおくとき,

$$\prod_{A \in \mathcal{A}} A = \prod_{i \in I} A_i$$

と書くと,

$$\prod_{i \in I} A_i = \left\{ f: I \to \bigcup_{i \in I} A_i \; ; \; \forall i \in I, \; f(i) \in A_i \right\}$$

が成り立つ.

注意. I, A を集合とし, $A = \{A_i = A ; i \in I\}$ とおくとき,

$$\prod_{i \in I} A_i = \prod_{i \in I} A = A^I$$

と書くと,

$$A^{I} = \{f : I \to A ; \forall i \in I, f(i) \in A\} = \{f : I \to A\}$$

が成り立つ.

注意. A を集合族とすると, 次の命題

$$\exists A \in \mathcal{A}, \ A = \emptyset \Rightarrow \prod_{A \in \mathcal{A}} A = \emptyset$$

は真である.

公理 0.2.1 (選択公理). A を集合族とすると, 次の命題

$$\forall A \in \mathcal{A}, \ A \neq \emptyset \Rightarrow \prod_{A \in \mathcal{A}} A \neq \emptyset$$

は真である.

0.3 自然数,整数,有理数, 実数

• 実数体

定義 0.3.1. 実数全体の集合を ℝ と書く.

公理 0.3.1. \mathbb{R} は実数の加法・乗法について可換体である. つまり, 次の (i)-(x) を満たす.

- (i) (x+y) + z = x + (y+z) $(x, y, z \in \mathbb{R})$.
- (ii) $\exists ! 0 \in \mathbb{R}, \forall x \in \mathbb{R}, x + 0 = x = 0 + x.$
- (iii) $\forall x \in \mathbb{R}, \exists ! x \in \mathbb{R}, x + (-x) = 0 = (-x) + x.$
- (iv) $x + y = y + x \ (x, y \in \mathbb{R}).$
- (v) (xy)z = x(yz) $(x, y, z \in \mathbb{R})$.
- (vi) $\exists ! 1 \in \mathbb{R} \setminus \{0\}, \forall x \in \mathbb{R}, x1 = x = 1x.$
- (vii) $\forall x \in \mathbb{R} \setminus \{0\}, \exists ! x^{-1} \in \mathbb{R} \setminus \{0\}, xx^{-1} = 1 = x^{-1}x.$
- (viii) $xy = yx \ (x, y \in \mathbb{R}).$
- (ix) (x+y)z = xz + yz $(x, y, z \in \mathbb{R})$.
- (x) $x(y+z) = xy + xz \ (x, y, z \in \mathbb{R}).$

注意 (減法, 除法). (iii) の x + (-y) を x - y と書き, (vii) の xy^{-1} を $\frac{x}{y}$ と書く.

命題 0.3.1.

- $(1) -(-x) = x \ (x \in \mathbb{R}).$
- (2) $(x^{-1})^{-1} = x \ (x, y \in \mathbb{R} \setminus \{0\}).$
- (3) $(xy)^{-1} = y^{-1}x^{-1} (x, y \in \mathbb{R} \setminus \{0\}).$

証明. 省略 (公理 0.3.1).

命題 0.3.2.

- (1) $x0 = 0x = 0 \ (x \in \mathbb{R}).$
- (2) $x(-y) = (-x)y = -(xy) \ (x, y \in \mathbb{R}).$
- (3) $(-x)(-y) = xy \ (x, y \in \mathbb{R}).$

証明. 省略 (公理 0.3.1).

命題 0.3.3. \mathbb{R} は実数の加法・乗法について**整域**である. つまり.

$$\forall x, y \in \mathbb{R}, \ (xy = 0 \Rightarrow (x = 0) \lor (y = 0))$$

を満たす.

証明. 省略 (公理 0.3.1). **公理 0.3.2.** ℝ は実数の大小相等について**全順序集合**である. つまり, 次の (i)–(iv) を満たす.

- (i) $\forall x \in \mathbb{R}, x \leq x$.
- (ii) $\forall x, y \in \mathbb{R}, ((x \le y) \land (x \ge y) \Rightarrow x = y).$
- (iii) $\forall x, y, z \in \mathbb{R}, ((x \le y) \land (y \le z) \Rightarrow x \le z).$
- (iv) $\forall x, y \in \mathbb{R}, (x \leq y) \lor (x \geq y).$

命題 0.3.4. 任意の $x, y \in \mathbb{R}$ に対し, 次の (i)–(iii) のいずれか一つだけが成り立つ.

- (i) x < y.
- (ii) x = y.
- (iii) x > y.

証明. 省略 (公理 0.3.2).

公理 0.3.3. ℝ は実数の加法・乗法・大小相等について順序体である. つまり, 次の (i), (ii) を満たす.

- (i) $\forall x, y, z \in \mathbb{R}$, $(x \le y \Rightarrow x + z \le y + z)$.
- (ii) $\forall x, y, z \in \mathbb{R}, ((x \le y) \land (z \ge 0) \Rightarrow xz \le yz).$

命題 0.3.5.

- (1) $\forall x, y \in \mathbb{R}, ((x \ge 0) \land (y \ge 0) \Rightarrow x + y \ge 0).$
- (2) $\forall x, y \in \mathbb{R}, ((x \ge 0) \land (y \ge 0) \Rightarrow xy \ge 0).$

証明. 省略 (公理 0.3.1, 公理 0.3.3).

命題 0.3.6.

- (1) $\forall x, y \in \mathbb{R}, ((x > 0) \land (y > 0) \Rightarrow xy > 0).$
- (2) $\forall x, y \in \mathbb{R}, ((x > 0) \land (y < 0) \Rightarrow xy < 0).$
- (3) $\forall x, y \in \mathbb{R}, ((x < 0) \land (y < 0) \Rightarrow xy > 0).$
- (4) $\forall x \in \mathbb{R}, (x \neq 0 \Rightarrow x^2 > 0).$

証明. 省略 (公理 0.3.1, 公理 0.3.3).

命題 0.3.7.

- (1) $\forall x \in \mathbb{R}, (x > 0 \Rightarrow x^{-1} > 0).$
- (2) $\forall x, y \in \mathbb{R}, ((x < y) \land (x > 0) \Rightarrow x^{-1} > y^{-1}).$

証明. 省略 (公理 0.3.1, 公理 0.3.3).

定義 0.3.2. $I \subseteq \mathbb{R}$ を \mathbb{R} の部分集合とする. I が \mathbb{R} の区間であるとは, I が

$$\forall a, b \in \mathbb{R}, \ (a, b \in I \Rightarrow \{(1-t)a + tb \ ; \ 0 \le t \le 1\} \subseteq I)$$

を満たすことを言う.

定理 0.3.1. 空でない ℝ の区間は次の (i)–(vi) だけである.

- (i) (開区間) $(a, b) = \{x \in \mathbb{R} ; a < x < b\} (a, b \in \mathbb{R}, a < b).$
- (ii) (閉区間) $[a,b] = \{x \in \mathbb{R} ; a \le x \le b\}$ $(a,b \in \mathbb{R}, a \le b)$.
- (iii) (半開区間) $(a, b] = \{x \in \mathbb{R} ; a < x \le b\}, [a, b) = \{x \in \mathbb{R} ; a \le x < b\} (a, b \in \mathbb{R}, a < b).$
- (iv) (開半直線) $(a, \infty) = \{x \in \mathbb{R} ; x > a\}, (-\infty, b) = \{x \in \mathbb{R} ; x < b\} (a, b \in \mathbb{R}).$
- (v) (閉半直線) $[a, \infty) = \{x \in \mathbb{R} \; ; \; x \ge a\}, (-\infty, b] = \{x \in \mathbb{R} \; ; \; x \le b\} \; (a, b \in \mathbb{R}).$
- (vi) (数直線) $(-\infty, \infty) = \mathbb{R}$.

証明. 省略.

• 自然数

定義 0.3.3. $A \subset \mathbb{R}$ を \mathbb{R} の部分集合とする.

- (1) A が**継承的**であるとは、A が次の(i)、(ii) を満たすことを言う.
 - (i) $0 \in A$.
 - (ii) $\forall n \in \mathbb{R}, (n \in A \Rightarrow n+1 \in A).$
- (2) \mathbb{R} の継承的部分集合全体の集合を $\mathcal{S}(\mathbb{R}) = \{A \subseteq \mathbb{R} ; A は継承的である \} と書く.$
- 例. ℝは ℝの最大の継承的部分集合である.

例. $\mathbb{N} = \bigcap_{A \in \mathcal{S}(\mathbb{R})} A$ は \mathbb{R} の<u>最小の継承的部分集合</u>である.

命題 0.3.8. $\forall A \subseteq \mathbb{R}, (A \in \mathcal{S}(\mathbb{R}) \Rightarrow A \supseteq \mathbb{N}).$

証明. 省略 (定義 0.3.3).

定義 0.3.4. $0+1=1, 1+1=2, 2+1=3, \dots, \mathbb{N}=\{0,1,2,3,\dots\}$ と書き、 \mathbb{N} の元を自然数と言う.

定理 0.3.2 (数学的帰納法の原理). $\forall A \subseteq \mathbb{N}, (A \in \mathcal{S}(\mathbb{R}) \Rightarrow A = \mathbb{N}).$

証明. 省略 (命題 0.3.8).

- №, ℝの包含関係

 $\mathbb{N} \subsetneq \mathbb{R}$.

定義 0.3.5. A, B を集合とする.

- (1) A から B への全単射 $f: A \to B$ が存在することを $\sharp(A) = \sharp(B)$ と書く.
- (2) $n=0 \Rightarrow \{0,1,\cdots,n-1\} = \emptyset, n \in \mathbb{N} \Rightarrow \sharp(\{0,1,\cdots,n-1\}) = n$ と書き, n を個数と言う.
- (3) $\sharp(\mathbb{N})=\aleph_0, \sharp(\mathbb{R})=\beth_1$ と書き、 \aleph_0, \beth_1 をそれぞれ**可算濃度、連続濃度**と言う.

例. $n \in \mathbb{N}, n \ge 1$ とし、 $A = \{a_0, a_1, \dots, a_{n-1}\}$ とおくと、 $\sharp(A) = n$.

例 (素数). $A = \{ p \in \mathbb{N} ; p \text{ は素数である } \} \text{ とおくと}, \sharp(A) = \aleph_0.$

定義 0.3.6. *A* を集合とする.

- (1) A が有限 (finite) であるとは, A が $\exists n \in \mathbb{N}, \sharp(A) = n$ を満たすことを言う.
- (2) A が**可算無限**であるとは, A が $\sharp(A) = \aleph_0$ を満たすことを言う.
- (3) A が連続無限であるとは, A が $\mathfrak{t}(A) = \beth_1$ を満たすことを言う.

例. $n \in \mathbb{N}, n \ge 1$ とし, $A = \{a_0, a_1, \dots, a_{n-1}\}$ とおくと, A は有限である.

例 (素数). $A = \{p \in \mathbb{N} ; p \text{ は素数である} \} \text{ とおくと}, A \text{ は可算無限である}.$

● 整数環

定義 0.3.7. $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \cdots\}$ と書き, \mathbb{Z} の元を整数と言う.

命題 0.3.9. \mathbb{Z} は実数の加法・乗法について**可換環**である. つまり, 次の (i)–(ix) を満たす.

- (i) (x+y) + z = x + (y+z) $(x, y, z \in \mathbb{Z})$.
- (ii) $\exists ! 0 \in \mathbb{Z}, \forall x \in \mathbb{Z}, x + 0 = x = 0 + x.$
- (iii) $\forall x \in \mathbb{Z}, \exists ! x \in \mathbb{Z}, x + (-x) = 0 = (-x) + x.$
- (iv) $x + y = y + x \ (x, y \in \mathbb{Z}).$
- (v) (xy)z = x(yz) $(x, y, z \in \mathbb{Z})$.
- (vi) $\exists ! 1 \in \mathbb{Z}, \forall x \in \mathbb{Z}, x 1 = x = 1x.$
- (vii) $xy = yx \ (x, y \in \mathbb{Z}).$
- (viii) $(x+y)z = xz + yz \ (x, y, z \in \mathbb{Z}).$
- (ix) $x(y+z) = xy + xz \ (x, y, z \in \mathbb{Z}).$

証明. 省略 (公理 0.3.1).

命題 0.3.10. ℤ は実数の大小相等について全順序集合である. つまり, 次の (i)-(iv) を満たす.

- (i) $\forall x \in \mathbb{Z}, x \leq x$.
- (ii) $\forall x, y \in \mathbb{Z}, ((x \le y) \land (x \ge y) \Rightarrow x = y).$
- (iii) $\forall x, y, z \in \mathbb{Z}$, $((x \le y) \land (y \le z) \Rightarrow x \le z)$.
- (iv) $\forall x, y \in \mathbb{Z}, (x \leq y) \lor (x \geq y).$

証明. 省略 (公理 0.3.2).

命題 0.3.11. \mathbb{Z} は実数の加法・乗法・大小相等について順序環である. つまり, 次の (i), (ii) を満たす.

- (i) $\forall x, y, z \in \mathbb{Z}$, $(x \le y \Rightarrow x + z \le y + z)$.
- (ii) $\forall x, y, z \in \mathbb{Z}$, $((x \le y) \land (z \ge 0) \Rightarrow xz \le yz)$.

証明. 省略 (公理 0.3.3).

- №, ℤ, ℝ の包含関係 -

 $\mathbb{N} \subsetneq \mathbb{Z} \subsetneq \mathbb{R}$.

• 有理数体

定義 0.3.8. $\mathbb{Q} = \left\{ \frac{m}{n} \; ; \; m, n \in \mathbb{Z}, \; n \neq 0 \right\}$ と書き, \mathbb{Q} の元を**有理数**と言う.

命題 0.3.12. ℚ は実数の加法・乗法について可換体である. つまり, 次の (i)-(x) を満たす.

- (i) (x+y) + z = x + (y+z) $(x, y, z \in \mathbb{Q})$.
- (ii) $\exists ! 0 \in \mathbb{Q}, \forall x \in \mathbb{Q}, x + 0 = x = 0 + x.$
- (iii) $\forall x \in \mathbb{Q}, \ \exists ! -x \in \mathbb{Q}, \ x + (-x) = 0 = (-x) + x.$
- (iv) $x + y = y + x \ (x, y \in \mathbb{Q}).$
- (v) $(xy)z = x(yz) \ (x, y, z \in \mathbb{Q}).$
- (vi) $\exists ! 1 \in \mathbb{Q} \setminus \{0\}, \forall x \in \mathbb{Q}, x1 = x = 1x.$
- (vii) $\forall x \in \mathbb{Q} \setminus \{0\}, \exists ! x^{-1} \in \mathbb{Q} \setminus \{0\}, xx^{-1} = 1 = x^{-1}x.$
- (viii) $xy = yx \ (x, y \in \mathbb{Q}).$
- (ix) (x+y)z = xz + yz $(x, y, z \in \mathbb{Q})$.
- (x) $x(y+z) = xy + xz \ (x, y, z \in \mathbb{Q}).$

証明. 省略 (公理 0.3.1).

命題 0.3.13. ℚ は実数の大小相等について全順序集合である. つまり, 次の (i)-(iv) を満たす.

- (i) $\forall x \in \mathbb{Q}, x \leq x$.
- (ii) $\forall x, y \in \mathbb{Q}$, $((x \le y) \land (x \ge y) \Rightarrow x = y)$.
- (iii) $\forall x, y, z \in \mathbb{Q}$, $((x \le y) \land (y \le z) \Rightarrow x \le z)$.
- (iv) $\forall x, y \in \mathbb{Q}, (x \leq y) \lor (x \geq y).$

証明. 省略(公理0.3.2).

命題 0.3.14. ℚ は実数の加法・乗法・大小相等について順序体である. つまり, 次の (i), (ii) を満たす.

- (i) $\forall x, y, z \in \mathbb{Q}$, $(x \le y \Rightarrow x + z \le y + z)$.
- (ii) $\forall x, y, z \in \mathbb{Q}$, $((x \le y) \land (z \ge 0) \Rightarrow xz \le yz)$.

証明. 省略 (公理 0.3.3).

- №, ℤ, ℚ, ℝ の包含関係 -

 $\mathbb{N} \subsetneq \mathbb{Z} \subsetneq \mathbb{Q} \subseteq \mathbb{R}$.

第1章 初等関数の微積分法

1.1 指数関数, 対数関数, 冪関数

• 指数関数

定義 1.1.1. $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ を Napier 数と言う.

定義 1.1.2.

(1) 任意の $n \in \mathbb{N}$ に対し、

$$e^{n} = \begin{cases} 1 & (n=0), \\ \underbrace{e \cdots e}_{n \text{ (m } i)}, & e^{-n} = \frac{1}{e^{n}} \end{cases}$$

をそれぞれeのn乗,-n乗と言う.

(2) 任意の $m, n \in \mathbb{N}, n \ge 1$ に対し,

$$e^{\frac{m}{n}} = \sqrt[n]{e^m}, \quad e^{-\frac{m}{n}} = \frac{1}{e^{\frac{m}{n}}}$$

をそれぞれeの $\frac{m}{n}$ 乗, $-\frac{m}{n}$ 乗と言う.

(3) 任意の $x \in \mathbb{R} \setminus \mathbb{Q}$ (定義 0.2.4) に対し, $\{r_n\}$ を $\lim_{n \to \infty} r_n = x$ となる有理数列とする.

$$e^x = \lim_{n \to \infty} e^{r_n}$$

をeのx乗と言う.

命題 1.1.1.

(1) (加法定理) $e^x e^y = e^{x+y}$ $(x, y \in \mathbb{R})$.

(2)
$$(e^x)^y = (e^y)^x = e^{xy} \ (x, y \in \mathbb{R}).$$

証明. 省略 (高等学校数学 II).

定義 1.1.3. 次の関数

$$\exp x = e^x \quad (x \in \mathbb{R})$$

によって定義される $\exp: \mathbb{R} \to (0, \infty)$ を**指数関数**と言う.

• 対数関数

定義 1.1.4. $\exp: \mathbb{R} \to (0,\infty)$ の逆関数 $\log: (0,\infty) \to \mathbb{R}$ を対数関数と言う. つまり, 任意の x>0 に対し,

$$\exp y = x$$

を満たす $y \in \mathbb{R}$ を $y = \log x$ と書き, $\log x$ をx の対数と言う.

命題 1.1.2.

- (1) $\exp(\log x) = x \ (x > 0).$
- (2) $\log(\exp y) = y \ (y \in \mathbb{R}).$
- (3) $\log 1 = 0$.
- (4) $\log e = 1$.

証明. 省略 (高等学校数学 II).

命題 1.1.3.

- (1) $(\text{mlk}zz) \log(x_1x_2) = \log x_1 + \log x_2 \ (x_1, x_2 > 0).$
- (2) $\log \frac{1}{x} = -\log x \ (x > 0).$

証明. 省略 (高等学校数学 II).

● 冪関数

定義 1.1.5. a > 0 とする. 任意の $x \in \mathbb{R}$ に対し,

$$a^x = \exp(x \log a)$$

をaのx乗と言う.

命題 1.1.4. a,b>0 とする.

- (1) (加法定理) $a^x a^y = a^{x+y}$ $(x, y \in \mathbb{R})$.
- (2) $\log(a^x) = x \log a \ (x \in \mathbb{R}).$
- (3) $(a^x)^y = (a^y)^x = a^{xy} \ (x, y \in \mathbb{R}).$
- $(4) (ab)^x = a^x b^x (x \in \mathbb{R}).$

証明. 省略 (講義の自筆ノート).

命題 1.1.5. *a* > 0 とする.

(1) 任意の $n \in \mathbb{N}$ に対して

$$a^{n} = \begin{cases} 1 & (n=0), \\ \underbrace{a \cdots a}_{n \text{ (m } \geq 1)}, & a^{-n} = \frac{1}{a^{n}} \end{cases}$$

が成り立つ.

(2) 任意の $m, n \in \mathbb{N}, n \ge 1$ に対して

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}, \quad a^{-\frac{m}{n}} = \frac{1}{a^{\frac{m}{n}}}$$

が成り立つ.

(3) 任意の $x \in \mathbb{R} \setminus \mathbb{Q}$ (定義 0.2.4) に対し, $\{r_n\}$ を $\lim_{n \to \infty} r_n = x$ となる有理数列とすると,

$$a^x = \lim_{n \to \infty} a^{r_n}$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

● 指数関数, 対数関数, 冪関数の微積分法

命題 1.1.6. $\lim_{h\to 0} \frac{\exp h - 1}{h} = 1$.

証明. 省略 (講義の自筆ノート).

命題 1.1.7. exp は ℝ で微分可能であり,

$$(\exp x)' = \exp x, \quad \int \exp x dx = \exp x \quad (x \in \mathbb{R})$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 1.1.8. \log は $(0,\infty)$ で微分可能であり、

$$(\log x)' = \frac{1}{x}, \quad \int \frac{1}{x} dx = \log x \quad (x > 0)$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 1.1.6. $\alpha \in \mathbb{R}$ とする. 次の関数

$$x^{\alpha} = \exp(\alpha \log x) \quad (x > 0)$$

によって定義される $*^{\alpha}:(0,\infty)\to(0,\infty)$ を**冪関数**と言う.

命題 1.1.9. $\alpha \in \mathbb{R}$, $\alpha \neq 0$ とすると, $*^{\alpha}$ は $(0, \infty)$ で微分可能であり,

$$(x^{\alpha})' = \alpha x^{\alpha - 1}, \quad \int x^{\alpha - 1} dx = \frac{1}{\alpha} x^{\alpha} \quad (x > 0)$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 1.1.7. *a* > 0 とする. 次の関数

$$a^x = \exp(x \log a) \quad (x \in \mathbb{R})$$

によって定義される $a^*: \mathbb{R} \to (0,\infty)$ を**冪関数**と言う.

命題 1.1.10. $a > 0, a \neq 1$ とすると, a^* は \mathbb{R} で微分可能であり,

$$(a^x)' = (\log a)a^x, \quad \int a^x dx = \frac{1}{\log a}a^x \quad (x \in \mathbb{R})$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

1.2 三角関数,逆三角関数

• 弧度法, 三角比

定義 1.2.1.

- (1) 単位円を $C = \{(x,y) \in \mathbb{R}^2 = \mathbb{R} \times \mathbb{R} ; x^2 + y^2 = 1\}$ (定義 0.2.7) と書く.
- (2) 円周率を π と書く.

定義 1.2.2 (弧度法). (1,0) と $(x,y) \in C$ を反時計回りに結ぶ C 上の弧を A(x,y) とする.

- (1) 任意の $(x,y) \in C$ に対し, A(x,y) の長さを l(A(x,y)) と書く.
- (2) 任意の $(x,y) \in C$ に対し、

$$\theta = l(A(x, y))$$

を満たす $\theta \in [0, 2\pi)$ を角 (1, 0), (0, 0), (x, y) の弧度と言う.

度数法	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
弧度法	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2}{3}\pi$	$\frac{3}{4}\pi$	$\frac{5}{6}\pi$	π	$\frac{3}{2}\pi$	2π

定義 1.2.3 (三角比). (1,0) と $(x,y) \in C$ を反時計回りに結ぶ C 上の弧を A(x,y) とする.

(1) 任意の $\theta \in \mathbb{R}$ に対し,

$$l(A(x,y)) \equiv \theta \pmod{2\pi}$$

を満たす $(x,y) \in C$ を $(x,y) = (\cos \theta, \sin \theta)$ と書き, $\cos \theta, \sin \theta$ をそれぞれ θ の余弦, 正弦と言う.

(2) 任意の $\theta \in \mathbb{R} \setminus \left(\mathbb{Z} + \frac{1}{2}\right) \pi$ (定義 0.2.4) に対し, $\tan \theta = \frac{\sin \theta}{\cos \theta}$ を θ の**正接**と言う.

● 三角関数

定義 1.2.4.

(1) 次の関数

によって定義される $\cos: \mathbb{R} \to [-1,1], \sin: \mathbb{R} \to [-1,1]$ をそれぞれ**余弦関数**, **正弦関数**と言う.

(2) 次の関数

$$\tan x = \frac{\sin x}{\cos x} \quad (x \in \mathbb{R})$$

によって定義される $\tan: \mathbb{R}\setminus \left(\mathbb{Z}+\frac{1}{2}\right)\pi \to \mathbb{R}$ (定義 0.2.4) を**正接関数**と言う.

命題 1.2.1.

(1) $\cos^2 x + \sin^2 x = 1 \ (x \in \mathbb{R}).$

(2)
$$1 + \tan^2 x = \frac{1}{\cos^2 x} \left(x \in \mathbb{R} \setminus \left(\mathbb{Z} + \frac{1}{2} \right) \pi \right).$$

証明. 省略 (高等学校数学 II).

命題 1.2.2.

(1)
$$\begin{cases} \cos(-x) = \cos x \ (x \in \mathbb{R}), \\ \sin(-x) = -\sin x \ (x \in \mathbb{R}). \end{cases}$$

(2)
$$\tan(-x) = -\tan x \left(x \in \mathbb{R} \setminus \left(\mathbb{Z} + \frac{1}{2}\right)\pi\right).$$

証明. 省略 (高等学校数学 II).

命題 1.2.3.

(1)
$$\begin{cases} \cos\left(x + \frac{\pi}{2}\right) = -\sin x \ (x \in \mathbb{R}), \\ \sin\left(x + \frac{\pi}{2}\right) = \cos x \ (x \in \mathbb{R}). \end{cases}$$

(2)
$$\tan\left(x + \frac{\pi}{2}\right) = -\frac{1}{\tan x} \ (x \in \mathbb{R} \setminus \mathbb{Z}\pi).$$

証明. 省略 (高等学校数学 II).

命題 1.2.4.

(1)
$$\begin{cases} \cos(x+\pi) = -\cos x \ (x \in \mathbb{R}), \\ \sin(x+\pi) = -\sin x \ (x \in \mathbb{R}). \end{cases}$$

(2)
$$\tan(x+\pi) = \tan x \left(x \in \mathbb{R} \setminus \left(\mathbb{Z} + \frac{1}{2}\right)\pi\right).$$

証明. 省略 (高等学校数学 II).

命題 1.2.5.

(1)
$$\begin{cases} \cos(x + 2\pi) = \cos x \ (z \in \mathbb{R}), \\ \sin(x + 2\pi) = \sin x \ (x \in \mathbb{R}). \end{cases}$$

(2)
$$\tan(x+2\pi) = \tan x \left(x \in \mathbb{R} \setminus \left(\mathbb{Z} + \frac{1}{2}\right)\pi\right).$$

証明. 省略 (高等学校数学 II).

命題 1.2.6 (加法定理).

(1)
$$\begin{cases} \cos(x+y) = \cos x \cos y - \sin x \sin y \ (x, y \in \mathbb{R}), \\ \sin(x+y) = \sin x \cos y + \cos x \sin y \ (x, y \in \mathbb{R}). \end{cases}$$

(2)
$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y} \left(x, y \in \mathbb{R}, \ x, y, x + y \notin \left(\mathbb{Z} + \frac{1}{2} \right) \pi \right).$$

証明. 省略 (高等学校数学 II).

• 逆三角関数

定義 1.2.5. $\sin:\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\to [-1,1]$ の逆関数 $\arcsin:[-1,1]\to\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ を**逆正弦関数**と言う.つまり,任意の $-1\leq x\leq 1$ に対し,

$$\sin y = x$$

を満たす $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ を $y = \arcsin x$ と書き, $\arcsin x$ を x の**逆正弦**と言う.

定義 1.2.6. $\cos: [0,\pi] \to [-1,1]$ の逆関数 $\arccos: [-1,1] \to [0,\pi]$ を逆余弦関数と言う. つまり, 任意の $-1 \le x \le 1$ に対し,

$$\cos y = x$$

を満たす $0 \le y \le \pi$ を $y = \arccos x$ と書き, $\arccos x$ を x の逆余弦と言う.

定義 1.2.7. $\tan:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to\mathbb{R}$ の逆関数 $\arctan:\mathbb{R}\to\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ を**逆正接関数**と言う. つまり, 任意の $x\in\mathbb{R}$ に対し,

$$\tan y = x$$

を満たす $-\frac{\pi}{2} < y < \frac{\pi}{2}$ を $y = \arctan x$ と書き, $\arctan x$ を x の**逆正接**と言う.

命題 1.2.7.

- (1) $\arcsin(-x) = -\arcsin x \ (-1 \le x \le 1).$
- (2) $\arctan(-x) = -\arctan x \ (x \in \mathbb{R}).$

証明. 省略(講義の自筆ノート).

命題 1.2.8.

- (1) $\arcsin x + \arccos x = \frac{\pi}{2} \ (-1 \le x \le 1).$
- (2) $\arctan x + \arctan \frac{1}{x} = \begin{cases} \frac{\pi}{2} & (x > 0), \\ -\frac{\pi}{2} & (x < 0). \end{cases}$

証明. 省略 (講義の自筆ノート).

● 三角関数, 逆三角関数の微積分法

命題 1.2.9.
$$\cos x < \frac{\sin x}{x} < 1 \left(-\frac{\pi}{2} < x < \frac{\pi}{2}, \ x \neq 0 \right).$$

証明. 省略(講義の自筆ノート).

命題 1.2.10.
$$\begin{cases} \lim_{x \to 0} \frac{1 - \cos x}{x} = 0, \\ \lim_{x \to 0} \frac{\sin x}{x} = 1. \end{cases}$$

証明. 省略 (講義の自筆ノート).

命題 1.2.11.

(1) cos, sin は ℝ で微分可能であり,

$$\begin{cases} (\cos x)' = -\sin x, & \int \sin x dx = -\cos x & (x \in \mathbb{R}), \\ (\sin x)' = \cos x, & \int \cos x dx = \sin x & (x \in \mathbb{R}) \end{cases}$$

が成り立つ.

(2) \tan は $\mathbb{R} \setminus \left(\mathbb{Z} + \frac{1}{2}\right) \pi$ で微分可能であり、

$$(\tan x)' = \frac{1}{\cos^2 x}, \quad \int \frac{1}{\cos^2 x} dx = \tan x \quad \left(x \in \mathbb{R} \setminus \left(\mathbb{Z} + \frac{1}{2}\right)\pi\right)$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 1.2.12.

(1) \arcsin は (-1,1) で微分可能であり、

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, \quad \int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x \quad (-1 < x < 1)$$

が成り立つ.

(2) \arccos は (-1,1) で微分可能であり、

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}, \quad \int \frac{1}{\sqrt{1-x^2}} dx = -\arccos x \quad (-1 < x < 1)$$

が成り立つ.

(3) arctan は ℝ で微分可能であり,

$$(\arctan x)' = \frac{1}{1+x^2}, \quad \int \frac{1}{1+x^2} dx = \arctan x \quad (x \in \mathbb{R})$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 1.2.13. a > 0 とする.

(1)
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} \ (-a < x < a).$$

(2)
$$\int \sqrt{a^2 - x^2} dx = \frac{1}{2} \left(x \sqrt{a^2 - x^2} + a^2 \arcsin \frac{x}{a} \right) (-a < x < a).$$

証明. 省略 (講義の自筆ノート).

命題 1.2.14. a > 0 とする.

(1)
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = -\arccos\frac{x}{a} \ (-a < x < a).$$

(2)
$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} \ (x \in \mathbb{R}).$$

証明. 省略 (講義の自筆ノート).

1.3 有理関数

● 部分分数分解

定義 1.3.1. $n \in \mathbb{N}$, $a_k \in \mathbb{R}$ $(k \in \{0, 1, \dots, n\})$, $a_n \neq 0$ とする.

$$p(x) = a_n x^n + \dots + a_1 x + a_0$$

によって定義される p を**多項式**と言う. また, $\deg(p) = n$ と書き, n を p の次数 (degree) と言う.

定義 1.3.2. p, q を多項式とする.

$$r(x) = \frac{p(x)}{q(x)}$$

によって定義される r を**有理式**と言う. 特に, $\deg(p) < \deg(q)$ のとき, r を**真分数式**と言う.

命題 1.3.1. 任意の多項式 p, d に対し, 次の (i), (ii) を満たす多項式 q, r が一意に存在する.

- (i) $\deg(r) < \deg(d)$.
- (ii) p(x) = d(x)q(x) + r(x).

証明. 省略.

命題 1.3.2 (部分分数分解). deg(p) < deg(q) を満たす任意の多項式 p, q に対し、

$$\frac{p(x)}{q(x)} = \sum_{n=1}^{n_1} \sum_{m=1}^{m_k} \frac{c_{mn}}{(x - a_n)^m} + \sum_{n=n_1+1}^{n_2} \sum_{m=1}^{m_k} \frac{d_{mn}x + e_{mn}}{\{(x - a_n)^2 + b_n^2\}^m}$$

を満たす $c_{mn} \in \mathbb{R}$ $(n \in \{1, \dots, n_1\}), d_{mn}, e_{mn} \in \mathbb{R}$ $(n \in \{n_1 + 1, \dots, n_2\})$ $(m \in \{1, \dots, m_n\})$ が一意 に存在する. ただし,

- $n_1 \in \mathbb{N}$ は q(x) = 0 の相異なる実根の個数.
- $n_2 \in \mathbb{N}$ は q(x) = 0 の相異なる根の個数.
- $a_n \in \mathbb{R} \ (n \in \{1, \dots, n_1\}) \ \text{td} \ q(x) = 0 \ \text{の実根}.$
- $a_n + ib_n \in \mathbb{C} \setminus \mathbb{R}$ $(n \in \{n_1 + 1, \dots, n_2\})$ は q(x) = 0 の複素根.
- $m_n \in \mathbb{N}, m_n \geq 1 \ (n \in \{1, \dots, n_1\})$ は a_n の重複度.
- $m_n \in \mathbb{N}, m_n \ge 1 \ (n \in \{n_1 + 1, \dots, n_2\})$ は $a_n + ib_n$ の重複度.

証明. 省略.

有理関数の積分法 I

例.

(1)
$$\frac{x^2+1}{x^3-x} = \frac{1}{x+1} - \frac{1}{x} + \frac{1}{x-1}$$
.

(2)
$$\int \frac{x^2 + 1}{x^3 - x} dx = \log\left(x - \frac{1}{x}\right)$$
.

証明. 省略 (講義の自筆ノート).

例.

(1)
$$\frac{x+1}{(x+2)(x-1)^2} = \frac{1}{9} \left\{ \frac{6}{(x-1)^2} + \frac{1}{x-1} - \frac{1}{x+2} \right\}.$$

(2)
$$\int \frac{x+1}{(x+2)(x-1)^2} dx = \frac{1}{9} \left(\log \frac{x-1}{x+2} - \frac{6}{x-1} \right).$$

証明. 省略 (講義の自筆ノート).

例.

(1)
$$\frac{x}{(x-1)(x^2+1)} = \frac{1}{2} \left(\frac{1}{x^2+1} - \frac{x}{x^2+1} + \frac{1}{x-1} \right).$$

(2)
$$\int \frac{x}{(x-1)(x^2+1)} dx = \frac{1}{2} \left(\log \frac{x-1}{\sqrt{x^2+1}} + \arctan x \right).$$

証明. 省略 (講義の自筆ノート).

有理関数の積分法 II

命題 1.3.3.

$$(1) t = \tan \frac{x}{2} \left(-\frac{\pi}{2} < x < \frac{\pi}{2} \right)$$
とおくと、

$$\cos x = \frac{1 - t^2}{1 + t^2}, \quad \sin x = \frac{2t}{1 + t^2}$$

が成り立つ.

(2) rを(2変数の)有理式とすると、

$$\int r(\cos x, \sin x) dx = \int r\left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right) \frac{2}{1+t^2} dt$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

例.
$$\int \frac{1}{\sin x} dx = \log \frac{\sin x}{1 + \cos x}.$$

証明. 省略 (講義の自筆ノート).

命題 1.3.4.

$$(1) t = \tan x \left(-\frac{\pi}{2} < x < \frac{\pi}{2} \right) とおくと,$$

$$\cos^2 x = \frac{1}{1+t^2}, \quad \sin^2 x = \frac{t^2}{1+t^2}$$

が成り立つ.

(2) rを(2変数の)有理式とすると、

$$\int r(\cos^2 x, \sin^2 x) dx = \int r\left(\frac{1}{1+t^2}, \frac{t^2}{1+t^2}\right) \frac{1}{1+t^2} dt$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

例.
$$\int \frac{1}{\sin^2 x} dx = -\frac{1}{\tan x}.$$

証明. 省略 (講義の自筆ノート).

● 有理関数の積分法 III

命題 1.3.5. $a, b, c \in \mathbb{R}, a > 0, b^2 - 4ac < 0$ とする.

(1) $t = \sqrt{ax^2 + bx + c} + \sqrt{ax} \ (x \in \mathbb{R})$ とおくと,

$$x = \frac{t^2 - c}{2\sqrt{at + b}}, \quad \sqrt{ax^2 + bx + c} = \frac{\sqrt{at^2 + bt} + \sqrt{ac}}{2\sqrt{at + b}}$$

が成り立つ.

(2) rを(2変数の)有理式とすると,

$$\int r(x, \sqrt{ax^2 + bx + c}) dx = \int r\left(\frac{t^2 - c}{2\sqrt{a}t + b}, \frac{\sqrt{a}t^2 + bt + \sqrt{a}c}{2\sqrt{a}t + b}\right) \frac{2(\sqrt{a}t^2 + bt + \sqrt{a}c)}{(2\sqrt{a}t + b)^2} dt$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 1.3.6. c > 0 とする.

(1)
$$\int \frac{1}{\sqrt{x^2 + c}} dx = \log(x + \sqrt{x^2 + c}) \ (x \in \mathbb{R}).$$

(2)
$$\int \sqrt{x^2 + c} dx = \frac{1}{2} \{ x \sqrt{x^2 + c} + c \log(x + \sqrt{x^2 + c}) \} \ (x \in \mathbb{R}).$$

証明. 省略 (講義の自筆ノート).

第2章 数列の極限と実数体の連続性

2.1 実数体の順序完備性

● Dedekind の公理

定義 2.1.1. K を \mathbb{Q} または \mathbb{R} , $(A,B) \in \mathcal{P}(K)^2 = \mathcal{P}(K) \times \mathcal{P}(K)$ (定義 0.2.5), $A,B \neq \emptyset$ を A と B の組 (定義 0.2.7) とする. (A,B) が次の (i), (ii) を満たすとき, (A,B) を K の切断と言う.

- (i) $A \cup B = K$, $A \cap B = \emptyset$.
- (ii) 任意の $a \in A$, $b \in B$ に対して a < b.

定義 2.1.2. $\emptyset \neq A \subseteq \mathbb{R}$ を \mathbb{R} の部分集合, $x \in \mathbb{R}$ とする.

- (1) $x \in A$, かつ任意の $a \in A$ に対して $a \le x$ のとき, x を A の最大元と言い, $x = \max A$ と書く.
- (2) $x \in A$, かつ任意の $a \in A$ に対して $a \ge x$ のとき, x を A の最小元と言い, $x = \min A$ と書く.

注意. 最大元・最小元が存在すれば、それらは一意である.

公理 2.1.1 (Dedekind の公理). \mathbb{R} の任意の切断 (A, B) は次の (i), (ii) のいずれか一つだけを満たす.

- (i) $\max A$ は存在せず, $\min B$ が存在する.
- (ii) $\max A$ が存在し、 $\min B$ は存在しない.

例. a > 1 とする.

- (1) $B = \{x \in \mathbb{R} ; x > 0, x^2 > a\}, A = \mathbb{R} \setminus B$ (定義 0.2.4) とおくと, (A, B) は \mathbb{R} の切断である.
- (2) $x^2 = a$ を満たす x > 0 が一意に存在する. これより, $x = \sqrt{a}$ と書き, \sqrt{a} を a の正の**平方根**と言う.

証明. 省略 (講義の自筆ノート).

例 (無理数). $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$ (定義 0.2.4).

証明. 省略 (高等学校数学 I).

- №, ℤ, ℚ, ℝ の包含関係

 $\mathbb{N} \subsetneq \mathbb{Z} \subsetneq \mathbb{Q} \subsetneq \mathbb{R}$.

• 上限公理, 下限公理

定義 2.1.3. $A \subset \mathbb{R}$ を \mathbb{R} の部分集合, $x \in \mathbb{R}$ とする.

(1) 任意の $a \in A$ に対して $a \le x$ のとき, x を A の上界と言う. また, A の上界全体の集合を

$$U(A) = \{x \in \mathbb{R} : \forall a \in A, a \le x\}$$

と書く.

(2) 任意の $a \in A$ に対して $a \ge x$ のとき, x を A の下界と言う. また, A の下界全体の集合を

$$L(A) = \{ x \in \mathbb{R} : \forall a \in A, \ a \ge x \}$$

と書く.

定義 2.1.4. $A \subseteq \mathbb{R}$ を \mathbb{R} の部分集合とする.

- (1) A が上に有界であるとは, $U(A) \neq \emptyset$ のことを言う.
- (2) A が下に有界であるとは, $L(A) \neq \emptyset$ のことを言う.
- (3) A が**有界**であるとは、A が上に有界かつ下に有界であることを言う.

定義 2.1.5. $\emptyset \neq A \subseteq \mathbb{R}$ を \mathbb{R} の部分集合とする.

- (1) A が上に有界のとき, $\sup A = \min U(A)$ を A の上限と言う.
- (2) A が下に有界のとき, $\inf A = \max L(A)$ を A の下限と言う.

命題 2.1.1. $\emptyset \neq A \subseteq \mathbb{R}$ を \mathbb{R} の部分集合, $\alpha \in \mathbb{R}$ とするとき, $\alpha = \sup A$ であるための必要十分条件は, α が次の (i), (ii) を満たすことである.

- (i) α は A の上界である.
- (ii) 任意の $x < \alpha$ に対し, x < a(x) を満たす $a(x) \in A$ が存在する.

証明. 省略 (講義の自筆ノート).

命題 2.1.2. $\emptyset \neq A \subseteq \mathbb{R}$ を \mathbb{R} の部分集合, $\alpha \in \mathbb{R}$ とするとき, $\alpha = \inf A$ であるための必要十分条件は, α が次の (i), (ii) を満たすことである.

- (i) α は A の下界である.
- (ii) 任意の $x > \alpha$ に対し,x > a(x)を満たす $a(x) \in A$ が存在する.

証明. 省略 (命題 2.1.1).

命題 2.1.3. $A \subset \mathbb{R}$ を \mathbb{R} の部分集合とする.

- (1) $\max A$ が存在すれば、 $A \neq \emptyset$ は上に有界であり、 $\sup A = \max A$ が成り立つ.
- (2) $\min A$ が存在すれば, $A \neq \emptyset$ は下に有界であり, $\inf A = \min A$ が成り立つ.

証明. 省略 (講義の自筆ノート).

公理 2.1.2 (上限公理). $\emptyset \neq A \subseteq \mathbb{R}$ を \mathbb{R} の部分集合とするとき, A が上に有界ならば, $\sup A$ が存在する.

公理 2.1.3 (下限公理). $\emptyset \neq A \subseteq \mathbb{R}$ を \mathbb{R} の部分集合とするとき, A が下に有界ならば, $\inf A$ が存在する.

実数体の連続性 I

補題 2.1.1. $A\subseteq\mathbb{R}$ を \mathbb{R} の部分集合とし、 $-A=\{-a\;;\;a\in A\}$ とおくと、次の (i)、(ii) は同値である.

- (i) $A \neq \emptyset$ は下に有界であり, inf A が存在する.
- (ii) $-A \neq \emptyset$ は上に有界であり, $\sup(-A)$ が存在する.

さらに、Aが(i) または(ii) を満たせば、

$$\sup(-A) = -\inf A$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

補題 2.1.2. $A \subseteq \mathbb{R}$ を \mathbb{R} の部分集合とし、 $-A = \{-a \; ; \; a \in A\}$ とおくと、次の (i), (ii) は同値である.

- (i) $A \neq \emptyset$ は上に有界であり, $\sup A$ が存在する.
- (ii) $-A \neq \emptyset$ は下に有界であり, $\inf(-A)$ が存在する.

さらに、Aが(i) または(ii) を満たせば、

$$\inf(-A) = -\sup A$$

が成り立つ.

証明. 省略 (補題 2.1.1).

定理 2.1.1 (実数体の順序完備性). 次の (i)-(iii) は互いに同値である.

- (i) Dedekind の公理.
- (ii) 上限公理.
- (iii) 下限公理.

証明. 省略 (講義の自筆ノート).

2.2 数列の極限

• 実数体上のノルム・距離

定義 2.2.1. 任意の $x \in \mathbb{R}$ に対し,

$$|x| = \max\{x, -x\} = \begin{cases} x & (x \ge 0), \\ -x & (x \le 0) \end{cases}$$

exの**ノルム**または**絶対値**と言う.

命題 2.2.1. (ℝ, | * |) は**ノルム空間**である. つまり, 次の (i)−(iii) を満たす.

- (i) $\forall x \in \mathbb{R}, (|x| \ge 0) \land (|x| = 0 \Leftrightarrow x = 0).$
- (ii) (三角不等式) $|x+y| \le |x| + |y|$ $(x, y \in \mathbb{R})$.
- (iii) $|xy| = |x||y| \ (x, y \in \mathbb{R}).$

証明. 省略 (講義の自筆ノート).

定義 2.2.2. 任意の $x, y \in \mathbb{R}$ に対し,

$$d(x,y) = |x - y|$$

をxとyの距離と言う.

命題 2.2.2. (\mathbb{R},d) は**距離空間**である. つまり, 次の (i)–(iii) を満たす.

- (i) $\forall x, y \in \mathbb{R}, (d(x, y) \ge 0) \land (d(x, y) = 0 \Leftrightarrow x = y).$
- (ii) (三角不等式) $d(x,z) \le d(x,y) + d(y,z)$ $(x,y,z \in \mathbb{R})$.
- (iii) $d(x,y) = d(y,x) \ (x,y \in \mathbb{R}).$

● 数列の収束・発散

定義 2.2.3. $a: \mathbb{N} \to \mathbb{R}$ (定義 0.2.8) を数列または実数列と言う. このとき,

$$a(n) = a_n \quad (n \in \mathbb{N}), \quad a = \{a_n\}_{n \in \mathbb{N}}$$

と書き, a_n を $\{a_n\}_{n\in\mathbb{N}}$ の一般項と言う.

定義 2.2.4 $(\varepsilon$ -N 論法). $\{a_n\}_{n\in\mathbb{N}}$ を数列とする. $n\to\infty$ のとき, a_n が $\alpha\in\mathbb{R}$ に**収束**するとは, 任意の $\varepsilon>0$ に対してある $N(\varepsilon)\in\mathbb{N}$ が存在し, $n\geq N(\varepsilon)$ を満たす任意の $n\in\mathbb{N}$ に対して

$$|a_n - \alpha| < \varepsilon$$

が成り立つことを言う. このとき, $\lim_{n\to\infty} a_n = \alpha$ と書く.

・定義 2.2.4 の論理式 -

$$\forall \varepsilon > 0, \ \exists N(\varepsilon) \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ (n \ge N(\varepsilon) \Rightarrow |a_n - \alpha| < \varepsilon).$$

定義 2.2.5 (M-N) 論法). $\{a_n\}_{n\in\mathbb{N}}$ を数列とする. $n\to\infty$ のとき, a_n が ∞ に発散するとは, 任意の M>0 に対してある $N(M)\in\mathbb{N}$ が存在し, $n\geq N(M)$ を満たす任意の $n\in\mathbb{N}$ に対して

$$a_n > M$$

が成り立つことを言う. このとき, $\lim_{n\to\infty} a_n = \infty$ と書く.

- 定義 2.2.5 の論理式

$$\forall M > 0, \ \exists N(M) \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ (n \ge N(M) \Rightarrow a_n > M).$$

定義 2.2.6 (M-N 論法). $\{a_n\}_{n\in\mathbb{N}}$ を数列とする. $n\to\infty$ のとき, a_n が $-\infty$ に発散するとは, 任意の M>0 に対してある $N(M)\in\mathbb{N}$ が存在し, $n\geq N(M)$ を満たす任意の $n\in\mathbb{N}$ に対して

$$a_n < -M$$

が成り立つことを言う. このとき, $\lim_{n\to\infty} a_n = -\infty$ と書く.

- 定義 2.2.6 の論理式 -

$$\forall M > 0, \ \exists N(M) \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ (n \ge N(M) \Rightarrow a_n < -M).$$

注意. 数列の有限個の項を付け加えたり取り除いたりしても, その数列の収束・発散には関係しない.

命題 2.2.3. $\{a_n\}_{n\in\mathbb{N}}$ を数列とするとき, $\{a_n\}_{n\in\mathbb{N}}$ が収束すれば, $\lim_{n \to \infty} a_n$ は一意である.

証明. 省略 (講義の自筆ノート).

定義 2.2.7. $\{a_n\}_{n\in\mathbb{N}}$ を数列とし, $a(\mathbb{N})=\{a_n\;;\;n\in\mathbb{N}\}\subseteq\mathbb{R}$ (定義 0.2.9) とおく.

- (1) $\{a_n\}_{n\in\mathbb{N}}$ が上に有界であるとは, $a(\mathbb{N})$ が上に有界であることを言う.
- (2) $\{a_n\}_{n\in\mathbb{N}}$ が下に有界であるとは, $a(\mathbb{N})$ が下に有界であることを言う.
- (3) $\{a_n\}_{n\in\mathbb{N}}$ が**有界**であるとは, $a(\mathbb{N})$ が有界であることを言う.

定義 2.2.7(3) の論理式・

 $\exists a, b \in \mathbb{R}, \ a \leq b, \ \forall n \in \mathbb{N}, \ a \leq a_n \leq b.$

定義 2.2.8. $\{a_n\}_{n\in\mathbb{N}}$ を数列とする.

- (1) $\{a_n\}_{n\in\mathbb{N}}$ が上に有界のとき, $\sup_{n\in\mathbb{N}}a_n=\sup a(\mathbb{N})$ を $\{a_n\}_{n\in\mathbb{N}}$ の上限と言う.
- (2) $\{a_n\}_{n\in\mathbb{N}}$ が下に有界のとき, $\inf_{n\in\mathbb{N}}a_n=\inf a(\mathbb{N})$ を $\{a_n\}_{n\in\mathbb{N}}$ の下限と言う.

注意. $\{a_n\}_{n\in\mathbb{N}}$ を数列とする.

- (1) (上限公理) $\{a_n\}_{n\in\mathbb{N}}$ が上に有界ならば, $\sup_{n\in\mathbb{N}} a_n$ が存在する.
- (2) (下限公理) $\{a_n\}_{n\in\mathbb{N}}$ が下に有界ならば, $\inf_{n\in\mathbb{N}} a_n$ が存在する.

命題 2.2.4. $\{a_n\}_{n\in\mathbb{N}}$ を数列とする.

- (1) $\{a_n\}_{n\in\mathbb{N}}$ が収束すれば, $\{a_n\}_{n\in\mathbb{N}}$ は有界である.
- (2) $\{a_n\}_{n\in\mathbb{N}}$ が収束し、かつ $\lim_{n\to\infty}a_n\neq 0$ ならば、ある $N\in\mathbb{N}$ が存在し、 $n\geq N$ を満たす任意の $n\in\mathbb{N}$ に対して

$$|a_n| > \frac{1}{2} \left| \lim_{n \to \infty} a_n \right|$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 2.2.5 (和・スカラー倍の極限). $\{a_n\}_{n\in\mathbb{N}}, \{b_n\}_{n\in\mathbb{N}}$ を数列, $c\in\mathbb{R}$ とする.

(1) $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ が収束すれば, $\{a_n+b_n\}_{n\in\mathbb{N}}$ は収束し,

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

が成り立つ.

(2) $\{a_n\}_{n\in\mathbb{N}}$ が収束すれば, $\{ca_n\}_{n\in\mathbb{N}}$ は収束し,

$$\lim_{n \to \infty} (ca_n) = c \lim_{n \to \infty} a_n$$

が成り立つ.

命題 2.2.6 (積・商の極限). $\{a_n\}_{n\in\mathbb{N}}, \{b_n\}_{n\in\mathbb{N}}$ を数列とする.

(1) $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ が収束すれば, $\{a_nb_n\}_{n\in\mathbb{N}}$ は収束し,

$$\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n$$

が成り立つ.

 $(2) \ \{a_n\}_{n\in\mathbb{N}}, \ \{b_n\}_{n\in\mathbb{N}} \ \text{が収束し}, \ \text{かつ} \lim_{n\to\infty} b_n \neq 0 \ \text{ならば}, \left\{\frac{a_n}{b_n}\right\}_{n\in\mathbb{N}} \ \text{は収束し},$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 2.2.7 (極限の単調性). $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ を数列とするとき, 任意の $n\in\mathbb{N}$ に対して $a_n\leq b_n$, かつ $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ が収束すれば,

$$\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 2.2.8 (はさみうちの原理). $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$, $\{c_n\}_{n\in\mathbb{N}}$ を数列とするとき, 任意の $n\in\mathbb{N}$ に対して $a_n\leq c_n\leq b_n$, かつ $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ が収束して $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$ ならば, $\{c_n\}_{n\in\mathbb{N}}$ は収束し,

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

が成り立つ.

2.3 実数体の Cauchy 完備性

• 単調収束公理

定義 2.3.1. $\{a_n\}_{n\in\mathbb{N}}$ を数列とする.

- $\{a_n\}_{n\in\mathbb{N}}$ が**単調増加**であるとは、任意の $n\in\mathbb{N}$ に対して $a_n\leq a_{n+1}$ のことを言う.
- (2) $\{a_n\}_{n\in\mathbb{N}}$ が**単調減少**であるとは、任意の $n\in\mathbb{N}$ に対して $a_n\geq a_{n+1}$ のことを言う.

定義 2.3.2. $\{a_n\}_{n\in\mathbb{N}}$ を数列とする.

- (1) $\{a_n\}_{n\in\mathbb{N}}$ が狭義単調増加であるとは、任意の $n\in\mathbb{N}$ に対して $a_n< a_{n+1}$ のことを言う.
- $\{a_n\}_{n\in\mathbb{N}}$ が**狭義単調減少**であるとは、任意の $n\in\mathbb{N}$ に対して $a_n>a_{n+1}$ のことを言う.

公理 2.3.1 (単調増加収束公理). $\{a_n\}_{n\in\mathbb{N}}$ を数列とするとき, $\{a_n\}_{n\in\mathbb{N}}$ が単調増加かつ上に有界ならば, $\{a_n\}_{n\in\mathbb{N}}$ は収束し,

$$\lim_{n \to \infty} a_n = \sup_{n \in \mathbb{N}} a_n$$

が成り立つ.

公理 2.3.2 (単調減少収束公理). $\{a_n\}_{n\in\mathbb{N}}$ を数列とするとき, $\{a_n\}_{n\in\mathbb{N}}$ が単調減少かつ下に有界ならば, $\{a_n\}_{n\in\mathbb{N}}$ は収束し,

$$\lim_{n\to\infty} a_n = \inf_{n\in\mathbb{N}} a_n$$

が成り立つ.

定理 2.3.1. 次の (i), (ii) は同値である.

- (i) 単調増加収束公理.
- (ii) 単調減少収束公理.

証明. 省略 (講義の自筆ノート).

定理 2.3.2.

- (1) 上限公理 ⇒ 単調増加収束公理.
- (2) 下限公理 ⇒ 単調減少収束公理.

証明. 省略 (講義の自筆ノート).

例. 数列 $\{a_n\}_{n\geq 1}$ を

$$a_n = \left(1 + \frac{1}{n}\right)^n \quad (n \in \mathbb{N}, \ n \ge 1)$$

によって定義すると, $\{a_n\}_{n\geq 1}$ は収束する. これより, $\lim_{n\to\infty}a_n=e$ と書き, e を Napier 数 (定義 1.1.1) と言う.

• Archimedes の公理

公理 2.3.3 (Archimedes の公理). 任意の x, y > 0 に対し、

nx > y

を満たす $n \in \mathbb{N}$ が存在する.

定理 2.3.3. 次の (i), (ii) は同値である.

- (i) Archimedes の公理.
- (ii) Nは上に有界でない.

- 定理 2.3.3(ii) の論理式 -

 $\forall b \in \mathbb{R}, \exists n \in \mathbb{N}, n > b.$

証明. 省略 (講義の自筆ノート).

定理 2.3.4. 次の (i), (ii) は同値である.

- (i) Archimedes の公理.
- (ii) $\lim_{n \to \infty} \frac{1}{n} = 0.$

証明. 省略 (演習問題).

定理 2.3.5. 次の (i), (ii) は同値である.

- (i) Archimedes の公理.
- (ii) 任意の 0 < a < 1 に対して $\lim_{n \to \infty} a^n = 0$.

証明. 省略 (講義の自筆ノート).

定理 2.3.6. 単調増加収束公理 \Rightarrow Archimedes の公理.

証明. 省略 (講義の自筆ノート).

命題 2.3.1.

(1) 任意の $x \in \mathbb{R}$ に対し,

 $n \le x < n+1$

を満たす $n \in \mathbb{Z}$ が一意に存在する.

(2) x < y を満たす任意の $x, y \in \mathbb{R}$ に対し、

x < r < y

を満たす $r \in \mathbb{Q}$ が存在する.

証明. 省略 (講義の自筆ノート).

定義 2.3.3.

(1) 任意の $x \in \mathbb{R}$ に対し,

$$n \le x < n+1$$

を満たす $n \in \mathbb{Z}$ を n = [x] と書き, [x] を x の Gauss 記号と言う.

(2) $A \subseteq \mathbb{R}$ を \mathbb{R} の部分集合とする. A が \mathbb{R} で**稠密**であるとは, 任意の $x \in \mathbb{R}$ に対し,

$$\lim_{n \to \infty} a_n = x$$

となる A の点列 $\{a_n\}_{n\in\mathbb{N}}$ が存在することを言う.

- **命題 2.3.2** (10 進展開). 任意の $x \in \mathbb{R}$ に対し, 次の (i), (ii) を満たす整数列 $\{x_n\}_{n \in \mathbb{N}}$ が存在する.
 - (i) $x_0 \in \mathbb{Z}, x_n \in \mathbb{N}, 0 \le x_n \le 9 \ (n \in \mathbb{N}, n \ge 1).$
 - (ii) 数列 $\{r_n\}_{n\in\mathbb{N}}$ を

$$r_n = \sum_{k=0}^n \frac{x_k}{10^k} \quad (n \in \mathbb{N})$$

によって定義すると, $\{r_n\}_{n\in\mathbb{N}}$ は $\lim_{n\to\infty}r_n=x$ となる有理数列である.

特に、 \mathbb{Q} は \mathbb{R} で稠密である.

• Cantor の公理

定義 2.3.4. $\{A_n\}_{n\in\mathbb{N}}$ を集合列とする.

- $\{A_n\}_{n\in\mathbb{N}}$ が**単調増加**であるとは、任意の $n\in\mathbb{N}$ に対して $A_n\subseteq A_{n+1}$ のことを言う.
- (2) $\{A_n\}_{n\in\mathbb{N}}$ が**単調減少**であるとは、任意の $n\in\mathbb{N}$ に対して $A_n\supseteq A_{n+1}$ のことを言う.

公理 2.3.4 (Cantor の公理). $\{I_n\}_{n\in\mathbb{N}}$ を \mathbb{R} の有界閉区間列とするとき, $\{I_n\}_{n\in\mathbb{N}}$ が単調減少ならば, 次の (i), (ii) を満たす $\alpha,\beta\in I_0$, $\alpha\leq\beta$ が存在する.

- (i) $\bigcap_{n\in\mathbb{N}} I_n = [\alpha, \beta].$
- (ii) $I_n = [a_n, b_n] \ (n \in \mathbb{N})$ とおくと、 $\{a_n\}_{n \in \mathbb{N}}, \{b_n\}_{n \in \mathbb{N}}$ は収束し、 $\lim_{n \to \infty} a_n = \alpha$ 、 $\lim_{n \to \infty} b_n = \beta$.

定理 2.3.7. 単調増加収束公理, 単調減少収束公理 ⇒Cantor の公理.

証明. 省略 (講義の自筆ノート).

定義 2.3.5. $a, b \in \mathbb{R}, a \leq b$ とし、I = [a, b] とおく. l(I) = b - a を I の長さと言う.

命題 2.3.3 (区間縮小法)・ $\{I_n\}_{n\in\mathbb{N}}$ を \mathbb{R} の有界閉区間列とするとき, $\{I_n\}_{n\in\mathbb{N}}$ が単調減少であり, かつ $\lim_{n\to\infty} l(I_n)=0$ ならば, 次の (i), (ii) を満たす $\alpha\in I_0$ が存在する.

- (i) $\bigcap_{n\in\mathbb{N}} I_n = \{\alpha\}.$
- (ii) $I_n = [a_n, b_n] \ (n \in \mathbb{N})$ とおくと, $\{a_n\}_{n \in \mathbb{N}}$ は収束し, $\lim_{n \to \infty} a_n = \alpha = \lim_{n \to \infty} b_n$.

• Bolzano-Weierstrass の公理

定義 2.3.6. $n:\mathbb{N}\to\mathbb{N}$ を \mathbb{N} から \mathbb{N} への写像, $a=\{a_n\}_{n\in\mathbb{N}}$ を数列とする.

- (1) n が狭義単調増加であるとは、任意の $k \in \mathbb{N}$ に対して n(k) < n(k+1) のことを言う.
- (2) n が狭義単調増加のとき, $a \circ n : \mathbb{N} \to \mathbb{N} \to \mathbb{R}$ (定義 0.2.13) を a の部分列と言う. このとき,

$$a \circ n(k) = a_{n(k)} \quad (k \in \mathbb{N}), \quad a \circ n = \{a_{n(k)}\}_{k \in \mathbb{N}}$$

と書き, $a_{n(k)}$ を $\{a_{n(k)}\}_{k\in\mathbb{N}}$ の一般項と言う.

命題 2.3.4. $n: \mathbb{N} \to \mathbb{N}$ を \mathbb{N} から \mathbb{N} への写像, $\{a_n\}_{n\in\mathbb{N}}$ を数列とする.

- (1) n が狭義単調増加ならば、任意の $k \in \mathbb{N}$ に対して $k \le n(k)$.
- (2) $\{a_n\}_{n\in\mathbb{N}}$ が収束すれば, $\{a_n\}_{n\in\mathbb{N}}$ の任意の部分列 $\{a_{n(k)}\}_{k\in\mathbb{N}}$ に対して $\lim_{k\to\infty}a_{n(k)}=\lim_{n\to\infty}a_n$.

証明. 省略 (講義の自筆ノート).

公理 2.3.5 (Bolzano-Weierstrass の公理). $\{a_n\}_{n\in\mathbb{N}}$ を数列とするとき, $\{a_n\}_{n\in\mathbb{N}}$ が有界ならば, $\{a_n\}_{n\in\mathbb{N}}$ の収束する部分列が存在する.

定理 2.3.8. Archimedes の公理, Cantor の公理 ⇒Bolzano-Weierstrass の公理.

• Cauchy の公理

定義 2.3.7. $\{a_n\}_{n\in\mathbb{N}}$ を数列とする. $\{a_n\}_{n\in\mathbb{N}}$ が Cauchy 列であるとは, 任意の $\varepsilon>0$ に対してある $N(\varepsilon)\in\mathbb{N}$ が存在し, $m,n\geq N(\varepsilon)$ を満たす任意の $m,n\in\mathbb{N}$ に対して

$$|a_n - a_m| < \varepsilon$$

が成り立つことを言う.

- 定義 2.3.7 の論理式 -

 $\forall \varepsilon > 0, \ \exists N(\varepsilon) \in \mathbb{N}, \ \forall m, n \in \mathbb{N}, \ (m, n \ge N(\varepsilon) \Rightarrow |a_n - a_m| < \varepsilon).$

命題 2.3.5. 数列 $\{a_n\}_{n\in\mathbb{N}}$ が収束すれば, $\{a_n\}_{n\in\mathbb{N}}$ は Cauchy 列である.

証明. 省略 (講義の自筆ノート).

注意 (命題 2.3.5 の対偶). 数列 $\{a_n\}_{n\in\mathbb{N}}$ が Cauchy 列でなければ, $\{a_n\}_{n\in\mathbb{N}}$ は収束しない.

公理 2.3.6 (Cauchy の公理). 数列 $\{a_n\}_{n\in\mathbb{N}}$ が Cauchy 列ならば, $\{a_n\}_{n\in\mathbb{N}}$ は収束する.

命題 2.3.6. $\{a_n\}_{n\in\mathbb{N}}$ を Cauchy 列とする.

- $(1) \{a_n\}_{n\in\mathbb{N}}$ は有界である.
- (2) $\{a_n\}_{n\in\mathbb{N}}$ の収束する部分列が存在すれば, $\{a_n\}_{n\in\mathbb{N}}$ は収束する.

証明. 省略 (講義の自筆ノート).

定理 2.3.9. Bolzano-Weierstrass の公理 ⇒Cauchy の公理.

● 実数体の連続性 II

定理	2.3.10. Bolzano-Weierstrass の公理 \Rightarrow Archimedes の公理.	
証明.	. 省略 (講義の自筆ノート).	
定理	2.3.11. Archimedes の公理, Cauchy の公理 \Rightarrow Dedekind の公理.	
証明.	. 省略 (講義の自筆ノート).	
定理	2.3.12 (実数体の Cauchy 完備性). 次の (i)–(viii) は互いに同値である.	
(i)	Dedekind の公理.	
(ii)	上限公理.	
(iii)	下限公理.	
(iv)	単調増加収束公理.	
(v)	単調減少収束公理.	
(vi)	Archimedes の公理, Cantor の公理.	
(vii)	Bolzano-Weierstrass の公理.	
(viii)	Archimedes の公理, Cauchy の公理.	
証明.	. 省略 (定理 2.1.1, 定理 2.3.1, 定理 2.3.2, 定理 2.3.6-定理 2.3.11).	
注意.	. 定理 2.3.12(i)–(viii) を総称して 連続の公理 と言う.	

第3章 関数の極限と連続関数

3.1 関数の極限

\bullet $x \rightarrow a$ での極限

定義 3.1.1. A を集合とする. $f: A \to \mathbb{R}$ (定義 0.2.8) を A 上の関数と言う.

定義 3.1.2 (ε - δ 論法). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f : I \setminus \{a\} \to \mathbb{R}$ を $I \setminus \{a\}$ 上の関数とする. $x \to a$ のとき, f(x) が $\alpha \in \mathbb{R}$ に収束するとは, 任意の $\varepsilon > 0$ に対してある $\delta(\varepsilon) > 0$ が存在し, $0 < |x - a| < \delta(\varepsilon)$ を満たす任意の $x \in I$ に対して

$$|f(x) - \alpha| < \varepsilon$$

が成り立つことを言う. このとき, $\lim_{x \to a} f(x) = \alpha$ と書く.

定義 3.1.2 の論理式 -

$$\forall \varepsilon > 0, \ \exists \delta(\varepsilon) > 0, \ \forall x \in I, \ (0 < |x - a| < \delta(\varepsilon) \Rightarrow |f(x) - \alpha| < \varepsilon).$$

定義 3.1.3 $(M-\delta$ 論法). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f: I \setminus \{a\} \to \mathbb{R}$ を $I \setminus \{a\}$ 上の関数とする. $x \to a$ のとき, f(x) が ∞ に発散するとは, 任意の M>0 に対してある $\delta(M)>0$ が存在し, $0<|x-a|<\delta(M)$ を満たす任意の $x \in I$ に対して

が成り立つことを言う. このとき, $\lim_{x\to a} f(x) = \infty$ と書く.

定義 3.1.3 の論理式 -

$$\forall M > 0, \ \exists \delta(M) > 0, \ \forall x \in I, \ (0 < |x - a| < \delta(M) \Rightarrow f(x) > M).$$

定義 3.1.4 (M- δ 論法). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f: I \setminus \{a\} \to \mathbb{R}$ を $I \setminus \{a\}$ 上の関数とする. $x \to a$ の とき, f(x) が $-\infty$ に発散するとは, 任意の M > 0 に対してある $\delta(M) > 0$ が存在し, $0 < |x-a| < \delta(M)$ を満たす任意の $x \in I$ に対して

$$f(x) < -M$$

が成り立つことを言う. このとき, $\lim_{x\to a} f(x) = -\infty$ と書く.

- 定義 3.1.4 の論理式 -

$$\forall M > 0, \ \exists \delta(M) > 0, \ \forall x \in I, \ (0 < |x - a| < \delta(M) \Rightarrow f(x) < -M).$$

命題 3.1.1. $I\subseteq\mathbb{R}$ を \mathbb{R} の区間, $a\in I$, $f:I\setminus\{a\}\to\mathbb{R}$ を $I\setminus\{a\}$ 上の関数とする. $x\to a$ のとき, f(x) が収束すれば, $\lim_{x\to a}f(x)$ は一意である.

証明. 省略 (講義の自筆ノート).

例. $\mathbb{R}\setminus\{0\}$ 上の関数 $f:\mathbb{R}\setminus\{0\}\to\mathbb{R}$ を

$$f(x) = x \sin \frac{1}{x} \quad (x \in \mathbb{R}, \ x \neq 0)$$

によって定義すると, $\lim_{x\to 0} f(x) = 0$ となる.

証明. 省略 (講義の自筆ノート).

定義 3.1.5. A を集合, $f: A \to \mathbb{R}$ を A 上の関数とし, $f(A) = \{f(x) ; x \in A\} \subseteq \mathbb{R}$ (定義 0.2.9) とおく.

- (1) f が A で**上に有界**であるとは, f(A) が上に有界であることを言う.
- (2) f が A で**下に有界**であるとは, f(A) が下に有界であることを言う.
- (3) f が A で**有界**であるとは, f(A) が有界であることを言う.

- 定義 3.1.5(3) の論理式 -

 $\exists c, d \in \mathbb{R}, \ c \leq d, \ \forall x \in A, \ c \leq f(x) \leq d.$

定義 3.1.6. $A \neq \emptyset$ を集合, $f: A \rightarrow \mathbb{R}$ を A 上の関数とする.

- (1) f が A で上に有界のとき, $\sup_{x \in A} f(x) = \sup f(A)$ を f の A での上限と言う.
- (2) f が A で下に有界のとき, $\inf_{x\in A}f(x)=\inf f(A)$ を f の A での**下限**と言う.

注意. $A \neq \emptyset$ を集合, $f: A \rightarrow \mathbb{R}$ を A 上の関数とする.

- (1) (上限公理) f が A で上に有界ならば, $\sup_{x \in A} f(x)$ が存在する.
- (2) (下限公理) f が A で下に有界ならば, $\inf_{x \in A} f(x)$ が存在する.

命題 3.1.2. $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f : I \setminus \{a\} \to \mathbb{R}$ を $I \setminus \{a\}$ 上の関数とする. $x \to a$ のとき,

- (1) f(x) が収束すれば、ある $\delta > 0$ が存在し、f は $(a \delta, a + \delta)$ で有界である.
- (2) f(x) が収束し、かつ $\lim_{x\to a} f(x) \neq 0$ ならば、ある $\delta > 0$ が存在し、任意の $x \in (a-\delta,a+\delta)$ に対して

$$|f(x)| > \frac{1}{2} \left| \lim_{x \to a} f(x) \right|$$

が成り立つ.

命題 3.1.3 (和・スカラー倍の極限). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f,g:I \setminus \{a\} \to \mathbb{R}$ を $I \setminus \{a\}$ 上の関数, $c \in \mathbb{R}$ とする.

(1) $x \to a$ のとき, f(x), g(x) が収束すれば, f(x) + g(x) は収束し,

$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

が成り立つ.

(2) $x \to a$ のとき, f(x) が収束すれば, cf(x) は収束し,

$$\lim_{x \to a} (cf(x)) = c \lim_{x \to a} f(x)$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 3.1.4 (積・商の極限). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f,g:I \setminus \{a\} \to \mathbb{R}$ を $I \setminus \{a\}$ 上の関数とする.

(1) $x \to a$ のとき, f(x), g(x) が収束すれば, f(x)g(x) は収束し,

$$\lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

が成り立つ.

(2) $x \rightarrow a$ のとき, f(x), g(x) が収束し、かつ $\lim_{x \rightarrow a} g(x) \neq 0$ ならば、 $\frac{f(x)}{g(x)}$ は収束し、

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 3.1.5 (合成の極限). $I,J\subseteq\mathbb{R}$ を \mathbb{R} の区間, $a\in I,\,f:I\setminus\{a\}\to J,\,g:J\to\mathbb{R}$ をそれぞれ $I\setminus\{a\},\,J$ 上の関数とするとき,

$$\lim_{x \to a} f(x) = b$$

となる $b \in J$ が存在し、かつ $y \to b$ のとき、g(y) が収束すれば、 $x \to a$ のとき、 $g \circ f$ は収束し、

$$\lim_{x \to a} (g \circ f)(x) = \lim_{y \to b} g(y)$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 3.1.6 (極限の単調性). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f,g: I \setminus \{a\} \to \mathbb{R}$ を $I \setminus \{a\}$ 上の関数とする. 任意の $x \in I$, $x \neq a$ に対して $f(x) \leq g(x)$, かつ $x \to a$ のとき, f(x), g(x) が収束すれば,

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 3.1.7 (はさみうちの原理). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f,g,h:I\setminus \{a\} \to \mathbb{R}$ を $I\setminus \{a\}$ 上の関数とする. 任意の $x \in I$, $x \neq a$ に対して $f(x) \leq h(x) \leq g(x)$, かつ $x \to a$ のとき, f(x), g(x) が収束して $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$ ならば, $x \to a$ のとき, h(x) は収束し,

$$\lim_{x \to a} h(x) = \lim_{x \to a} f(x) = \lim_{x \to a} g(x)$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 3.1.8. $I\subseteq\mathbb{R}$ を \mathbb{R} の区間, $a\in I$, $f:I\setminus\{a\}\to\mathbb{R}$ を $I\setminus\{a\}$ 上の関数, $\alpha\in\mathbb{R}$ とすると, 次の (i), (ii) は同値である.

- (i) $\lim_{x \to a} f(x) = \alpha$.
- (ii) 任意の $n \in \mathbb{N}$ に対して $x_n \neq a$, かつ $\lim_{n \to \infty} x_n = a$ となる I の任意の点列 $\{x_n\}_{n \in \mathbb{N}}$ に対して

$$\lim_{n \to \infty} f(x_n) = \alpha$$

となる.

証明. 省略 (講義の自筆ノート).

定理 3.1.1 (Cauchy の収束判定法). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f: I \setminus \{a\} \to \mathbb{R}$ を $I \setminus \{a\}$ 上の関数とすると, 次の (i), (ii) は同値である.

- (i) $x \to a$ のとき, f(x) は収束する.
- (ii) 任意の $\varepsilon>0$ に対してある $\delta(\varepsilon)>0$ が存在し, $0<|x-a|,|y-a|<\delta(\varepsilon)$ を満たす任意の $x,y\in I$ に対して

$$|f(x) - f(y)| < \varepsilon$$

が成り立つ.

$\bullet x \rightarrow a \pm 0$ での極限

定義 3.1.7 (ε - δ 論法). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f : I \setminus \{a\} \to \mathbb{R}$ を $I \setminus \{a\}$ 上の関数とする.

(1) $x \to a + 0$ のとき, f(x) が $\alpha \in \mathbb{R}$ に**収束**するとは, 任意の $\varepsilon > 0$ に対してある $\delta(\varepsilon) > 0$ が存在し, $a < x < a + \delta(\varepsilon)$ を満たす任意の $x \in I$ に対して

$$|f(x) - \alpha| < \varepsilon$$

が成り立つことを言う. このとき, $\lim_{x\to a+0} f(x) = \alpha$ と書く.

(2) $x \to a - 0$ のとき, f(x) が $\alpha \in \mathbb{R}$ に**収束**するとは, 任意の $\varepsilon > 0$ に対してある $\delta(\varepsilon) > 0$ が存在し, $a - \delta(\varepsilon) < x < a$ を満たす任意の $x \in I$ に対して

$$|f(x) - \alpha| < \varepsilon$$

が成り立つことを言う. このとき, $\lim_{x\to a-0} f(x) = \alpha$ と書く.

- 定義 3.1.7(1) の論理式 -

$$\forall \varepsilon > 0, \ \exists \delta(\varepsilon) > 0, \ \forall x \in I, \ (a < x < a + \delta(\varepsilon) \Rightarrow |f(x) - \alpha| < \varepsilon).$$

命題 3.1.9. $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f: I \setminus \{a\} \to \mathbb{R}$ を $I \setminus \{a\}$ 上の関数とすると, 次の (i), (ii) は同値である.

- (i) $x \to a$ のとき, f(x) は収束する.
- (ii) $x \to a \pm 0$ のとき, f(x) は収束し, $\lim_{x \to a+0} f(x) = \lim_{x \to a-0} f(x)$.

さらに, f が (i) または (ii) を満たせば, $\lim_{x \to a} f(x) = \lim_{x \to a+0} f(x) = \lim_{x \to a-0} f(x)$ が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 3.1.8 $(M-\delta$ 論法). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f: I \setminus \{a\} \to \mathbb{R}$ を $I \setminus \{a\}$ 上の関数とする.

(1) $x \to a+0$ のとき, f(x) が ∞ に発散するとは, 任意の M>0 に対してある $\delta(M)>0$ が存在し, $a < x < a+\delta(M)$ を満たす任意の $x \in I$ に対して

が成り立つことを言う. このとき, $\lim_{x \to a+0} f(x) = \infty$ と書く.

(2) $x \to a - 0$ のとき, f(x) が ∞ に発散するとは, 任意の M > 0 に対してある $\delta(M) > 0$ が存在し, $a - \delta(M) < x < a$ を満たす任意の $x \in I$ に対して

が成り立つことを言う. このとき, $\lim_{x\to a-0}f(x)=\infty$ と書く.

定義 3.1.8(1) の論理式

$$\forall M > 0, \ \exists \delta(M) > 0, \ \forall x \in I, \ (a < x < a + \delta(M) \Rightarrow f(x) > M).$$

例. $(0,\infty)$ 上の関数 $f:(0,\infty)\to\mathbb{R}$ を

$$f(x) = \frac{1}{x} \quad (x > 0)$$

によって定義すると, $\lim_{x\to +0} f(x) = \infty$ となる.

証明. 省略 (講義の自筆ノート).

定義 3.1.9 $(M-\delta$ 論法). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f: I \setminus \{a\} \to \mathbb{R}$ を $I \setminus \{a\}$ 上の関数とする.

(1) $x \to a+0$ のとき, f(x) が $-\infty$ に**発散**するとは, 任意の M>0 に対してある $\delta(M)>0$ が存在し, $a < x < a+\delta(M)$ を満たす任意の $x \in I$ に対して

$$f(x) < -M$$

が成り立つことを言う. このとき, $\lim_{x\to a+0} f(x) = -\infty$ と書く.

(2) $x \to a-0$ のとき, f(x) が $-\infty$ に**発散**するとは, 任意の M>0 に対してある $\delta(M)>0$ が存在し, $a-\delta(M)< x< a$ を満たす任意の $x\in I$ に対して

$$f(x) < -M$$

が成り立つことを言う. このとき, $\lim_{x\to a-0} f(x) = -\infty$ と書く.

- 定義 3.1.9(1) の論理式 -

$$\forall M > 0, \ \exists \delta(M) > 0, \ \forall x \in I, \ (a < x < a + \delta(M) \Rightarrow f(x) < -M).$$

注意. $x \to a \pm 0$ での極限に対しても, $x \to a$ での極限と同様の命題が成り立つ.

$\bullet x \rightarrow \pm \infty$ での極限

定義 3.1.10 (ε -N 論法). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f: I \to \mathbb{R}$ を I 上の関数とする.

(1) $(a \in \mathbb{R}, I = (a, \infty))$ $x \to \infty$ のとき, f(x) が $\alpha \in \mathbb{R}$ に**収束**するとは, 任意の $\varepsilon > 0$ に対してある $N(\varepsilon) > a$ が存在し, $x > N(\varepsilon)$ を満たす任意の $x \in I$ に対して

$$|f(x) - \alpha| < \varepsilon$$

が成り立つことを言う. このとき, $\lim_{x\to\infty} f(x) = \alpha$ と書く.

(2) $(b \in \mathbb{R}, I = (-\infty, b))$ $x \to -\infty$ のとき, f(x) が $\alpha \in \mathbb{R}$ に**収束**するとは, 任意の $\varepsilon > 0$ に対してある $N(\varepsilon) > -b$ が存在し, $x < -N(\varepsilon)$ を満たす任意の $x \in I$ に対して

$$|f(x) - \alpha| < \varepsilon$$

が成り立つことを言う. このとき, $\lim_{x\to -\infty} f(x) = \alpha$ と書く.

- 定義 3.1.10(1) の論理式 -

$$\forall \varepsilon > 0, \ \exists N(\varepsilon) > a, \ \forall x \in (a, \infty), \ (x > N(\varepsilon) \Rightarrow |f(x) - \alpha| < \varepsilon).$$

例. $(0,\infty)$ 上の関数 $f:(0,\infty)\to\mathbb{R}$ を

$$f(x) = \frac{1}{x} \quad (x > 0)$$

によって定義すると, $\lim_{x \to \infty} f(x) = 0$ となる.

証明. 省略 (講義の自筆ノート).

定義 3.1.11 (M-N) 論法). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f:I \to \mathbb{R}$ を I 上の関数とする.

(1) $(a \in \mathbb{R}, I = (a, \infty))$ $x \to \infty$ のとき, f(x) が ∞ に**発散**するとは, 任意の M > 0 に対してある N(M) > a が存在し, x > N(M) を満たす任意の $x \in I$ に対して

が成り立つことを言う. このとき, $\lim_{x\to\infty} f(x) = \infty$ と書く.

(2) $(b \in \mathbb{R}, I = (-\infty, b))$ $x \to -\infty$ のとき, f(x) が ∞ に発散するとは, 任意の M > 0 に対してある N(M) > -b が存在し, x < -N(M) を満たす任意の $x \in I$ に対して

が成り立つことを言う. このとき, $\lim_{x\to\infty} f(x) = \infty$ と書く.

- 定義 3.1.11(1) の論理式 -

$$\forall M > 0, \ \exists N(M) > a, \ \forall x \in (a, \infty), \ (x > N(M) \Rightarrow f(x) > M).$$

定義 3.1.12 (M-N) 論法). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f:I \to \mathbb{R}$ を I 上の関数とする.

(1) $(a\in\mathbb{R},\,I=(a,\infty))$ $x\to\infty$ のとき, f(x) が $-\infty$ に**発散**するとは, 任意の M>0 に対してある N(M)>a が存在し, x>N(M) を満たす任意の $x\in I$ に対して

$$f(x) < -M$$

が成り立つことを言う. このとき, $\lim_{x\to\infty} f(x) = -\infty$ と書く.

(2) $(b \in \mathbb{R}, I = (-\infty, b))$ $x \to -\infty$ のとき, f(x) が $-\infty$ に**発散**するとは, 任意の M > 0 に対してある N(M) > -b が存在し, x < -N(M) を満たす任意の $x \in I$ に対して

$$f(x) < -M$$

が成り立つことを言う. このとき, $\lim_{x\to -\infty} f(x) = -\infty$ と書く.

- 定義 3.1.12(1) の論理式 –

$$\forall M > 0, \ \exists N(M) > a, \ \forall x \in (a, \infty), \ (x > N(M) \Rightarrow f(x) < -M).$$

注意. $x \to \pm \infty$ での極限に対しても, $x \to a$ での極限と同様の命題が成り立つ.

3.2 連続関数, 一様連続関数, 半連続関数

• 連続関数

定義 3.2.1. $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f: I \to \mathbb{R}$ を I 上の関数とする.

(1) f が $a \in I$ で連続であるとは、

$$\lim_{x \to a} f(x) = f(a)$$

となることを言う.

(2) f が I で連続であるとは, f が任意の $a \in I$ で連続であることを言う.

- 定義 3.2.1(2) の論理式 -

$$\forall a \in I, \ \forall \varepsilon > 0, \ \exists \delta(a, \varepsilon) > 0, \ \forall x \in I, \ (|x - a| < \delta(a, \varepsilon) \Rightarrow |f(x) - f(a)| < \varepsilon).$$

命題 3.2.1 (和・スカラー倍の連続性). $I\subseteq\mathbb{R}$ を \mathbb{R} の区間, $a\in I,\,f,g:I\to\mathbb{R}$ を I 上の関数, $c\in\mathbb{R}$ とする.

(1) f, g が a で連続ならば, f + g は a で連続であり,

$$\lim_{x \to a} (f(x) + g(x)) = f(a) + g(a)$$

が成り立つ.

(2) f が a で連続ならば, cf は a で連続であり,

$$\lim_{x \to a} (cf(x)) = cf(a)$$

が成り立つ.

証明. 省略 (命題 3.1.3).

命題 3.2.2 (積・商の連続性). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f,g:I \to \mathbb{R}$ を I 上の関数とする.

(1) f, g が a で連続ならば, fg は a で連続であり,

$$\lim_{x \to a} (f(x)g(x)) = f(a)g(a)$$

が成り立つ.

(2) f,g が a で連続であり、かつ $g(a) \neq 0$ ならば、 $\frac{f}{g}$ は a で連続であり、

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f(a)}{g(a)}$$

が成り立つ.

証明. 省略 (命題 3.1.4).

例. $(0,\infty)$ 上の関数 $f:(0,\infty)\to\mathbb{R}$ を

$$f(x) = \frac{1}{x} \quad (x > 0)$$

によって定義すると, f は $(0,\infty)$ で連続である.

証明. 省略 (講義の自筆ノート).

命題 3.2.3 (合成の連続性). $I,J\subseteq\mathbb{R}$ を \mathbb{R} の区間, $a\in I, f:I\to J, g:J\to\mathbb{R}$ をそれぞれ I,J 上の関数とするとき, f,g がそれぞれ a,f(a) で連続ならば, $g\circ f$ は a で連続であり,

$$\lim_{x \to a} (g \circ f)(x) = g(f(a))$$

が成り立つ.

証明. 省略 (命題 3.1.5).

命題 3.2.4. $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f: I \to \mathbb{R}$ を I 上の関数とすると, 次の (i), (ii) は同値である.

- (i) f は a で連続である.
- (ii) $\lim_{n\to\infty}x_n=a$ となる I の任意の点列 $\{x_n\}_{n\in\mathbb{N}}$ に対して

$$\lim_{n \to \infty} f(x_n) = f(a)$$

となる.

証明. 省略 (命題 3.1.8).

● 一様連続関数

定義 3.2.2 $(\varepsilon$ - δ 論法). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f: I \to \mathbb{R}$ を I 上の関数とする. f が I で**一様連続**であるとは, 任意の $\varepsilon > 0$ に対してある $\delta(\varepsilon) > 0$ が存在し, $|x-y| < \delta(\varepsilon)$ を満たす任意の $x,y \in I$ に対して

$$|f(x) - f(y)| < \varepsilon$$

が成り立つことを言う.

・定義 3.2.2 の論理式 -

$$\forall \varepsilon > 0, \ \exists \delta(\varepsilon) > 0, \ \forall x, y \in I, \ (|x - y| < \delta(\varepsilon) \Rightarrow |f(x) - f(y)| < \varepsilon).$$

命題 3.2.5. $I\subseteq\mathbb{R}$ を \mathbb{R} の区間, $f:I\to\mathbb{R}$ を I 上の関数とするとき, f が I で一様連続ならば, f は I で連続である.

証明. 省略 (講義の自筆ノート).

例. \mathbb{R} 上の関数 $f, g: \mathbb{R} \to \mathbb{R}$ を

$$f(x) = \cos x \quad (x \in \mathbb{R}),$$

$$g(x) = \sin x \quad (x \in \mathbb{R})$$

によって定義すると, f, g は \mathbb{R} で一様連続である.

証明. 省略 (講義の自筆ノート).

定理 3.2.1 (Heine-Cantor の定理). $a,b \in \mathbb{R}, \ a < b, \ f : [a,b] \to \mathbb{R}$ を [a,b] 上の関数とするとき, f が [a,b] で連続ならば, f は [a,b] で一様連続である.

証明. 省略 (講義の自筆ノート).

例. $(0,\infty)$ 上の関数 $f:(0,\infty)\to\mathbb{R}$ を

$$f(x) = \frac{1}{x} \quad (x > 0)$$

によって定義すると, f は $(0,\infty)$ で連続であるが, 一様連続でない.

● 半連続関数

定義 3.2.3 (ε - δ 論法). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f: I \to \mathbb{R}$ を I 上の関数とする.

(1) f が $a \in I$ で**上半連続**であるとは、任意の $\varepsilon > 0$ に対してある $\delta(\varepsilon) > 0$ が存在し、 $|x-a| < \delta(\varepsilon)$ を満たす任意の $x \in I$ に対して

$$f(x) - f(a) < \varepsilon$$

が成り立つことを言う.

(2) f が I で**上半連続**であるとは, f が任意の $a \in I$ で上半連続であることを言う.

- 定義 3.2.3(2) の論理式 -

$$\forall a \in I, \ \forall \varepsilon > 0, \ \exists \delta(a, \varepsilon) > 0, \ \forall x \in I, \ (|x - a| < \delta(a, \varepsilon) \Rightarrow f(x) - f(a) < \varepsilon).$$

定義 3.2.4 (ε - δ 論法). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f: I \to \mathbb{R}$ を I 上の関数とする.

(1) f が $a \in I$ で**下半連続**であるとは、任意の $\varepsilon > 0$ に対してある $\delta(\varepsilon) > 0$ が存在し、 $|x-a| < \delta(\varepsilon)$ を満たす任意の $x \in I$ に対して

$$f(x) - f(a) > -\varepsilon$$

が成り立つことを言う.

(2) f が I で**下半連続**であるとは, f が任意の $a \in I$ で下半連続であることを言う.

- 定義 3.2.4(2) の論理式 🗕

$$\forall a \in I, \ \forall \varepsilon > 0, \ \exists \delta(a, \varepsilon) > 0, \ \forall x \in I, \ (|x - a| < \delta(a, \varepsilon) \Rightarrow f(x) - f(a) > -\varepsilon).$$

命題 3.2.6. $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f: I \to \mathbb{R}$ を I 上の関数とすると, 次の (i), (ii) は同値である.

- (i) f は a で連続である.
- (ii) f は a で上半連続かつ下半連続である.

証明. 省略 (講義の自筆ノート).

例. \mathbb{R} 上の関数 $f: \mathbb{R} \to \mathbb{R}$ を

$$f(x) = \begin{cases} \sin\frac{1}{x} & (x \neq 0), \\ 1 & (x = 0) \end{cases}$$

によって定義すると、fは0で上半連続であるが、下半連続でない.

3.3 中間値の定理, 逆関数の定理, 最大値の定理

• 中間値の定理

補題 3.3.1 (Bolzano の定理). $a,b \in \mathbb{R}, \ a < b, \ f : [a,b] \to \mathbb{R}$ を [a,b] 上の関数とするとき, f が [a,b] で連続であり, かつ f(a) < 0 < f(b) または f(a) > 0 > f(b) ならば,

$$f(x_0) = 0$$

を満たす $a < x_0 < b$ が存在する.

証明. 省略 (講義の自筆ノート).

定理 3.3.1 (中間値の定理). $a,b \in \mathbb{R}, \ a < b, \ f : [a,b] \to \mathbb{R}$ を [a,b] 上の関数とし, $c = \min\{f(a), f(b)\}$, $d = \max\{f(a), f(b)\}$ とおくとき, f が [a,b] で連続ならば, 任意の $c \le y_0 \le d$ に対し,

$$f(x_0) = y_0$$

を満たす $a \le x_0 \le b$ が存在する.

証明. 省略 (講義の自筆ノート).

命題 3.3.1. $I \subseteq \mathbb{R}$ を \mathbb{R} の区間 (定義 0.3.2), $f: I \to \mathbb{R}$ を I 上の関数とし, $f(I) = \{f(x) \; ; \; x \in I\} \subseteq \mathbb{R}$ (定義 0.2.9) とおくとき, f が I で連続ならば, f(I) は \mathbb{R} の区間である.

● 逆関数の定理

定義 3.3.1. $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f: I \to \mathbb{R}$ を I 上の関数とする.

- (1) f が I で**単調増加**であるとは、任意の $x, x' \in I$, $x \le x'$ に対して $f(x) \le f(x')$ のことを言う.
- (2) f が I で**単調減少**であるとは、任意の $x, x' \in I$, $x \le x'$ に対して $f(x) \ge f(x')$ のことを言う.
- (3) f が I で**単調**であるとは、f が I で単調増加または I で単調減少であることを言う.

定義 3.3.2. $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f:I \to \mathbb{R}$ を I 上の関数とする.

- (1) f が I で狭義単調増加であるとは、任意の $x, x' \in I$, x < x' に対して f(x) < f(x') のことを言う.
- (2) f が I で狭義単調減少であるとは、任意の $x, x' \in I$, x < x' に対して f(x) > f(x') のことを言う.
- (3) f が I で**狭義単調**であるとは、f が I で狭義単調増加または I で狭義単調減少であることを言う.

命題 3.3.2. $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f: I \to \mathbb{R}$ を I 上の関数とする.

- (1) f が I で狭義単調ならば, f は I から \mathbb{R} への単射 (定義 0.2.11) である.
- (2) f が I から \mathbb{R} への単射かつ I で連続ならば, f は I で狭義単調である.

証明. 省略 (講義の自筆ノート).

定理 3.3.2 (逆関数の定理). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f: I \to \mathbb{R}$ を I 上の関数とし, $f(I) = \{f(x) \; ; \; x \in I\} \subseteq \mathbb{R}$ (定義 0.2.9) とおく.

- (1) f が I で狭義単調増加かつ連続ならば, $f^{-1}:f(I)\to I$ は f(I) で狭義単調増加かつ連続である.
- (2) f が I で狭義単調減少かつ連続ならば, $f^{-1}:f(I)\to I$ は f(I) で狭義単調減少かつ連続である.

• 最大値の定理

定義 3.3.3. $A \neq \emptyset$ を集合, $f: A \to \mathbb{R}$ を A 上の関数とし, $f(A) = \{f(x) \; ; \; x \in A\} \subseteq \mathbb{R}$ (定義 0.2.9) とおく.

- $(1) \, \, \max f(A) \,$ が存在するとき, $\max_{x \in A} f(x) = \max f(A) \, \, \mbox{$ \hat{c}$ } f \, \, \mbox{$ O$ } A \, \, \mbox{$ \mathcal{C}$ }$ の $A \, \, \mbox{$ \mathcal{C}$ }$ の A
- (2) $\min f(A)$ が存在するとき, $\min_{x \in A} f(x) = \min f(A)$ を f の A での最小値と言う.

定義 3.3.4. A を集合, $f: A \to \mathbb{R}$ を A 上の関数とする.

(1) f が $x_0 \in A$ で最大であるとは、

$$f(x_0) = \max_{x \in A} f(x)$$

が成り立つことを言う.

(2) f が $x_0 \in A$ で最小であるとは、

$$f(x_0) = \min_{x \in A} f(x)$$

が成り立つことを言う.

補題 3.3.2 (有界性の定理). $a,b \in \mathbb{R}, a < b, f : [a,b] \to \mathbb{R}$ を [a,b] 上の関数とする.

- (1) f が [a,b] で上半連続ならば, f は [a,b] で上に有界である.
- (2) f が [a,b] で下半連続ならば, f は [a,b] で下に有界である.

証明. 省略 (講義の自筆ノート).

定理 3.3.3 (最大値の定理). $a,b \in \mathbb{R}, a < b, f : [a,b] \to \mathbb{R}$ を [a,b] 上の関数とする.

- (1) f が [a,b] で上半連続ならば, f の [a,b] での最大値が存在する.
- (2) f が [a,b] で下半連続ならば, f の [a,b] での最小値が存在する.

証明. 省略(講義の自筆ノート).

定理 3.3.4. $a,b \in \mathbb{R}, a < b, f : [a,b] \to \mathbb{R}$ を [a,b] 上の関数とするとき, f が [a,b] で連続ならば, f の [a,b] での最大値・最小値が存在し,

$$c = \min_{a \le x \le b} f(x), \quad d = \max_{a \le x \le b} f(x)$$

とおくと, f([a,b]) = [c,d] (定義 0.2.9) が成り立つ.

第4章 導関数と平均値の定理

4.1 導関数と接線

• 導関数

定義 4.1.1. $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f: I \to \mathbb{R}$ を I 上の関数とする.

(1) f が $a \in I$ で微分可能であるとは、

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \alpha$$

となる $\alpha \in \mathbb{R}$ が存在することを言う. このとき, $\alpha = f'(a)$ と書き, f'(a) を f の a での微分係数と言う.

(2) f が I で微分可能であるとは, f が任意の $a \in I$ で微分可能であることを言う. このとき, $f': I \to \mathbb{R}$ を f の導関数と言う.

注意. $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f : I \to \mathbb{R}$ を I 上の関数とする.

- (1) a が I の左端点ならば、 $\lim_{x\to a+0} \frac{f(x)-f(a)}{x-a}$ を f の a での (右) 微分係数とする.
- (2) a が I の右端点ならば、 $\lim_{x\to a-0} \frac{f(x)-f(a)}{x-a}$ を f の a での (左) 微分係数とする.

命題 4.1.1. $I\subseteq\mathbb{R}$ を \mathbb{R} の区間, $a\in I,\,f:I\to\mathbb{R}$ を I 上の関数とするとき, f が a で微分可能ならば, f は a で連続である.

証明. 省略 (講義の自筆ノート).

命題 4.1.2 (和・スカラー倍の微分可能性). $I\subseteq\mathbb{R}$ を \mathbb{R} の区間, $a\in I,\,f,g:I\to\mathbb{R}$ を I 上の関数, $c\in\mathbb{R}$ とする.

(1) f, g が a で微分可能ならば, f + g は a で微分可能であり,

$$(f+g)'(a) = f'(a) + g'(a)$$

が成り立つ.

(2) f が a で微分可能ならば, cf は a で微分可能であり,

$$(cf)'(a) = cf'(a)$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 4.1.3 (積・商の微分可能性). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f,g:I \to \mathbb{R}$ を I 上の関数とする.

(1) f, g が a で微分可能ならば, fg は a で微分可能であり,

$$(fg)'(a) = f'(a)g(a) + f(a)g'(a)$$

が成り立つ.

(2) f, g が a で微分可能であり, かつ $g(a) \neq 0$ ならば, $\frac{f}{g}$ は a で微分可能であり,

$$\left(\frac{f}{q}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2}$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 4.1.4 (合成の微分可能性). $I,J\subseteq\mathbb{R}$ を \mathbb{R} の区間, $a\in I, f:I\to J, g:J\to\mathbb{R}$ をそれぞれ I,J 上の関数とするとき, f,g がそれぞれ a,f(a) で微分可能ならば, $g\circ f$ は a で微分可能であり,

$$(g \circ f)'(a) = g'(f(a))f'(a)$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 4.1.5 (逆の微分可能性). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f : I \to \mathbb{R}$ を I 上の狭義単調連続関数とするとき, f が a で微分可能であり, かつ $f'(a) \neq 0$ ならば, f^{-1} は f(a) で微分可能であり,

$$(f^{-1})'(f(a)) = \frac{1}{f'(a)}$$

が成り立つ.

● Landau の記号

定義 4.1.2 (Landau の記号). $a \in \mathbb{R}, \delta > 0$ とする.

- (1) $I_{\delta}(a)=\{x\in\mathbb{R}\;;\;0<|x-a|<\delta\}$ を a の除外近傍という.
- (2) $f,g:I_{\delta}(a) \to \mathbb{R}$ を $I_{\delta}(a)$ 上の関数とする. f(x)=o(g(x)) $(x \to a)$ であるとは、

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0$$

となることを言う. このとき, $f(x) < g(x) \ (x \to a)$ と書く.

例. $\alpha, \beta \in \mathbb{R}$ とするとき, $\alpha > \beta$ ならば, $x^{\alpha} = o(x^{\beta})$ $(x \to +0)$.

● 接線

定義 4.1.3. $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f: I \to \mathbb{R}$ を I 上の関数とする.

$$G(f) = \{(x, y) \in \mathbb{R}^2 ; x \in I, y = f(x)\}$$

を f の**グラフ**と言う.

命題 4.1.6. $I\subseteq\mathbb{R}$ を \mathbb{R} の区間, $a\in I,\,f:I\to\mathbb{R}$ を I 上の関数とすると, 次の (i), (ii) は同値である.

- (i) f は a で微分可能である.
- (ii) $f(x) f(a) = \alpha(x a) + o(x a)$ $(x \to a)$ を満たす $\alpha \in \mathbb{R}$ が存在する.

さらに, f が (i) または (ii) を満たせば, $f'(a) = \alpha$ が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 4.1.4. $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f: I \to \mathbb{R}$ を I 上の a で微分可能な関数とする.

$$T_a(f) = \{(x, y) \in \mathbb{R}^2 : y - f(a) = f'(a)(x - a)\}$$

をG(f)の(a, f(a))での接線と言う.

4.2 平均値の定理

補題 **4.2.1** (Rolle の定理). $a,b \in \mathbb{R}, \ a < b, \ f:[a,b] \to \mathbb{R}$ を [a,b] で連続かつ (a,b) で微分可能な関数 とするとき, f(a) = f(b) ならば,

$$f'(x_0) = 0$$

を満たす $a < x_0 < b$ が存在する.

証明. 省略 (講義の自筆ノート).

定理 4.2.1 (平均値の定理). $a,b \in \mathbb{R}, \ a < b, \ f:[a,b] \to \mathbb{R}$ を [a,b] で連続かつ (a,b) で微分可能な関数とすると、

 \Box

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

を満たす $a < x_0 < b$ が存在する.

証明. 省略 (講義の自筆ノート).

命題 4.2.1. $a,b \in \mathbb{R}, a < b, f : [a,b] \to \mathbb{R}$ を [a,b] で連続かつ (a,b) で微分可能な関数とする.

- (1) f は [a,b] で単調増加 $\Leftrightarrow f' \geq 0$. つまり, $\forall x \in (a,b), f'(x) \geq 0$.
- (2) f は [a,b] で単調減少 $\Leftrightarrow f' < 0$. つまり, $\forall x \in (a,b), f'(x) < 0$.

証明. 省略 (講義の自筆ノート).

命題 4.2.2. $a, b \in \mathbb{R}, a < b, f : [a, b] \to \mathbb{R}$ を [a, b] で連続かつ (a, b) で微分可能な関数とする.

- (1) f は [a,b] で狭義単調増加 $\Leftarrow f' > 0$. つまり, $\forall x \in (a,b), f'(x) > 0$.
- (2) f は [a, b] で狭義単調減少 $\Leftarrow f' < 0$. つまり, $\forall x \in (a, b), f'(x) < 0$.

証明. 省略 (命題 4.2.1).

補題 **4.2.2.** $a,b \in \mathbb{R}, \ a < b, \ f: [a,b] \to \mathbb{R}$ を [a,b] で連続かつ (a,b) で微分可能な関数とするとき、 $\forall x \in (a,b), \ f'(x) \neq 0$ ならば、 $f(a) \neq f(b)$.

証明. 省略 (講義の自筆ノート).

定理 4.2.2 (Cauchy の平均値の定理). $a,b \in \mathbb{R}, a < b, f,g : [a,b] \to \mathbb{R}$ を [a,b] で連続かつ (a,b) で微分可能な関数とするとき, $\forall x \in (a,b), g'(x) \neq 0$ ならば,

$$\frac{f'(x_0)}{g'(x_0)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

を満たす $a < x_0 < b$ が存在する.

4.3 de l'Hôpital の法則

\bullet $\frac{0}{0}$ の不定形

命題 4.3.1 (de l'Hôpital の法則). $a, b \in \mathbb{R}, a < b, f, g : (a, b) \to \mathbb{R}$ を (a, b) 上の微分可能関数で、次の (i), (ii) を満たすものとする.

(i)
$$\forall x \in (a,b), g(x) \neq 0, \text{ ind } f(x) = 0, \lim_{x \to a+0} g(x) = 0.$$

(ii)
$$\forall x \in (a,b), g'(x) \neq 0,$$
 かつ $x \to a+0$ のとき, $\frac{f'(x)}{g'(x)}$ は収束する.

 $x \to a + 0$ のとき, $\frac{f(x)}{g(x)}$ は収束し,

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = \lim_{x \to a+0} \frac{f'(x)}{g'(x)}$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

注意. $a = -\infty$ のときも、 命題 4.3.1 が成り立つ.

命題 4.3.2 (de l'Hôpital の法則). $a,b \in \mathbb{R}, a < b, f,g : (a,b) \to \mathbb{R}$ を (a,b) 上の微分可能関数で、次の (i), (ii) を満たすものとする.

(i)
$$\forall x \in (a,b), g(x) \neq 0, \ \text{Im}_{x \to b-0} f(x) = 0, \ \lim_{x \to b-0} g(x) = 0.$$

(ii)
$$\forall x \in (a,b), g'(x) \neq 0,$$
 かつ $x \rightarrow b - 0$ のとき, $\frac{f'(x)}{g'(x)}$ は収束する.

 $x \to b - 0$ のとき, $\frac{f(x)}{g(x)}$ は収束し,

$$\lim_{x \to b-0} \frac{f(x)}{g(x)} = \lim_{x \to b-0} \frac{f'(x)}{g'(x)}$$

が成り立つ.

証明. 省略 (命題 4.3.1).

注意. $b = \infty$ のときも, 命題 4.3.2 が成り立つ.

例. a, b > 0 とすると, $\lim_{x \to 0} \frac{a^x - b^x}{x} = \log \frac{a}{b}$.

ullet の不定形

命題 4.3.3 (de l'Hôpital の法則). $a, b \in \mathbb{R}, a < b, f, g : (a, b) \to \mathbb{R}$ を (a, b) 上の微分可能関数で、次の (i), (ii) を満たすものとする.

- (i) $\lim_{x\to a+0} f(x) = \pm \infty$, $\lim_{x\to a+0} g(x) = \pm \infty$ (複号任意).
- (ii) $\forall x \in (a,b), g'(x) \neq 0,$ かつ $x \to a+0$ のとき, $\frac{f'(x)}{g'(x)}$ は収束する.

 $x \to a + 0$ のとき, $\frac{f(x)}{g(x)}$ は収束し,

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = \lim_{x \to a+0} \frac{f'(x)}{g'(x)}$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

注意. $a = -\infty$ のときも、命題 4.3.3 が成り立つ.

命題 4.3.4 (de l'Hôpital の法則). $a, b \in \mathbb{R}, a < b, f, g : (a, b) \to \mathbb{R}$ を (a, b) 上の微分可能関数で、次の (i), (ii) を満たすものとする.

- (i) $\lim_{x\to b-0} f(x) = \pm \infty$, $\lim_{x\to b-0} g(x) = \pm \infty$ (複号任意).
- (ii) $\forall x \in (a,b), g'(x) \neq 0, かつ x \rightarrow b 0 のとき, \frac{f'(x)}{g'(x)}$ は収束する.

 $x \to b - 0$ のとき, $\frac{f(x)}{g(x)}$ は収束し,

$$\lim_{x \to b-0} \frac{f(x)}{g(x)} = \lim_{x \to b-0} \frac{f'(x)}{g'(x)}$$

が成り立つ.

証明. 省略 (命題 4.3.3).

注意. $b = \infty$ のときも、 命題 4.3.4 が成り立つ.

例. $\alpha > 0$ とすると, $\lim_{x \to \infty} \frac{\log x}{x^{\alpha}} = 0$.

第5章 高階導関数と Taylor の定理

5.1 高階導関数と関数の極大・極小

• n 階導関数

定義 5.1.1. $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f: I \to \mathbb{R}$ を I 上の関数とする. 任意の $n \in \mathbb{N}$, $n \geq 1$ に対し, 次の (i), (ii) によって帰納的に定義される $f^{(n)}: I \to \mathbb{R}$ を f の n 階導関数と言う.

- (i) $f^{(0)} = f$.
- (ii) $\forall k \in \{0, 1, \dots, n-1\}, (f^{(k)}: I \to \mathbb{R} \text{ が } I \text{ で微分可能ならば}, f^{(k+1)} \text{ を$

$$f^{(k+1)} = (f^{(k)})'$$

によって定義する).

例. $\alpha \in \mathbb{R}$ とし、 $f:(0,\infty) \to (0,\infty)$ を

$$f(x) = x^{\alpha} \quad (x > 0)$$

によって定義すると, $f^{(n)}(x) = \alpha(\alpha - 1) \cdots (\alpha - n + 1) x^{\alpha - n} \ (n \in \mathbb{N}, \ n \ge 1, \ x > 0)$.

証明. 省略 (講義の自筆ノート).

定義 5.1.2. $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f: I \to \mathbb{R}$ を I 上の関数とする.

(1) f が I で n 回連続微分可能または C^n 級 $(n \in \mathbb{N})$ であるとは, 任意の $k \in \{0, 1, \dots, n\}$ に対して $f^{(k)}$ が定義され, $f^{(n)}$ が I で連続であることを言う.

(2) f が I で無限回微分可能または C^∞ 級であるとは, 任意の $n\in\mathbb{N}$ に対して f が I で C^n 級であることを言う.

定義 5.1.3. 任意の $n, k \in \mathbb{N}$ に対し、

$$\binom{n}{k} = \begin{cases} 1 & (k=0), \\ \frac{n(n-1)\cdots(n-k+1)}{k!} & (k \ge 1) \end{cases}$$

を**二項係数**と言う.

命題 5.1.1 (Leibniz の法則). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $n \in \mathbb{N}$, $f, g : I \to \mathbb{R}$ を I 上の C^n 級関数とすると,

$$(fg)^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)}(x) g^{(k)}(x) \quad (x \in I)$$

が成り立つ.

● 関数の極大・極小

定義 5.1.4. $I \subseteq \mathbb{R}$ を \mathbb{R} の開区間 (定理 0.3.1(i), (iv), (vi)), $f: I \to \mathbb{R}$ を I 上の関数とする.

(1) f が $a \in I$ で極大であるとは、ある $\delta > 0$ が存在し、 $|x-a| < \delta$ を満たす任意の $x \in I$ に対して

$$f(x) \le f(a)$$

が成り立つことを言う.

(2) f が $a \in I$ で極小であるとは、ある $\delta > 0$ が存在し、 $|x-a| < \delta$ を満たす任意の $x \in I$ に対して

$$f(x) \ge f(a)$$

が成り立つことを言う.

定義 5.1.5. $I \subseteq \mathbb{R}$ を \mathbb{R} の開区間 (定理 0.3.1(i), (iv), (vi)), $f: I \to \mathbb{R}$ を I 上の関数とする.

(1) f が $a \in I$ で**狭義極大**であるとは、ある $\delta > 0$ が存在し、 $0 < |x-a| < \delta$ を満たす任意の $x \in I$ に対して

が成り立つことを言う.

(2) f が $a \in I$ で**狭義極小**であるとは、ある $\delta > 0$ が存在し、 $0 < |x-a| < \delta$ を満たす任意の $x \in I$ に対して

が成り立つことを言う.

命題 5.1.2. $I \subseteq \mathbb{R}$ を \mathbb{R} の開区間 (定理 0.3.1(i), (iv), (vi)), $a \in I$, $f: I \to \mathbb{R}$ を I 上の微分可能関数と するとき, f が a で極大または極小ならば, f'(a) = 0.

証明. 省略 (講義の自筆ノート).

定義 5.1.6. $I \subseteq \mathbb{R}$ を \mathbb{R} の開区間 (定理 0.3.1(i), (iv), (vi)), $f: I \to \mathbb{R}$ を I 上の微分可能関数とする. f'(a) = 0 を満たす $a \in I$ を f の停留点と言う.

命題 5.1.3. $I\subseteq\mathbb{R}$ を \mathbb{R} の開区間 (定理 0.3.1(i), (iv), (vi)), $f:I\to\mathbb{R}$ を I 上の C^2 級関数, $a\in I$ を f の停留点とする.

- (1) f''(a) > 0 ならば, f は a で狭義極小である.
- (2) f''(a) < 0 ならば, f は a で狭義極大である.

5.2 Taylor の定理

定理 5.2.1 (Taylor の定理). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $n \in \mathbb{N}$, $f : I \to \mathbb{R}$ を I 上の C^{n+1} 級関数とすると, 任意の $x \in I$ に対し,

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}((1-\theta(x))a + \theta(x)x)}{(n+1)!} (x-a)^{n+1}$$

を満たす $0 < \theta(x) < 1$ が存在する. さらに, $R_n(x) = \frac{f^{(n+1)}((1-\theta(x))a + \theta(x)x)}{(n+1)!}(x-a)^{n+1}$ とおくと, $R_n(x) = o((x-a)^n)$ $(x \to a)$.

証明. 省略 (講義の自筆ノート).

定理 5.2.2 (Taylor の定理). $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $n \in \mathbb{N}$, $f: I \to \mathbb{R}$ を I 上の C^{n+1} 級関数とすると,

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} + \int_{a}^{x} \frac{(x - u)^{n}}{n!} f^{(n+1)}(u) du \quad (x \in I)$$

が成り立つ. さらに, $R_n(x) = \int_a^x \frac{(x-u)^n}{n!} f^{(n+1)}(u) du$ とおくと, $R_n(x) = o((x-a)^n)$ $(x \to a)$.

証明. 省略 (講義の自筆ノート).

定理 5.2.3. $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $n \in \mathbb{N}$, $f : I \to \mathbb{R}$ を I 上の C^{n+1} 級関数とするとき,

$$f(x) = \sum_{k=0}^{n} a_k (x - a)^k + o((x - a)^n) \quad (x \to a)$$

を満たす $a_k \in \mathbb{R}$ $(k \in \{0, 1, \dots, n\})$ が存在すれば,

$$a_k = \frac{f^{(k)}(a)}{k!} \quad (k \in \{0, 1, \dots, n\})$$

が成り立つ.

証明. 省略(講義の自筆ノート).

定義 5.2.1. $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $n \in \mathbb{N}$, $f : I \to \mathbb{R}$ を I 上の C^{n+1} 級関数とする.

$$\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}$$

を f の a を中心とする n 次 Taylor 多項式と言う.

5.3 初等関数の Taylor 多項式

• Landau の記号

定義 5.3.1 (Landau の記号). $a \in \mathbb{R}$ とする.

- (1) (a, ∞) を ∞ の除外近傍という.
- (2) $f,g:(a,\infty)\to\mathbb{R}$ を (a,∞) 上の関数とする. f(x)=o(g(x)) $(x\to\infty)$ であるとは、

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$

となることを言う. このとき, f(x) < g(x) $(x \to \infty)$ と書く.

例. $\alpha, \beta \in \mathbb{R}$ とするとき, $\alpha < \beta$ ならば, $x^{\alpha} = o(x^{\beta})$ $(x \to \infty)$.

証明. 省略 (講義の自筆ノート).

定義 5.3.2 (Landau の記号). $b \in \mathbb{R}$ とする.

- (1) $(-\infty, b)$ を $-\infty$ の**除外近傍**という.
- (2) $f,g:(-\infty,b)\to\mathbb{R}$ を $(-\infty,b)$ 上の関数とする. f(x)=o(g(x)) $(x\to-\infty)$ であるとは、

$$\lim_{x \to -\infty} \frac{f(x)}{g(x)} = 0$$

となることを言う. このとき, f(x) < g(x) $(x \to -\infty)$ と書く.

● 幾何級数、指数関数、対数関数、冪関数

命題 5.3.1. $n \in \mathbb{N}$ とすると,

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + \frac{x^{n+1}}{1-x} \quad (-1 < x < 1)$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

命題 5.3.2. $n \in \mathbb{N}$ とすると, 任意の $x \in \mathbb{R}$ に対し,

$$e^x = \sum_{k=0}^{n} \frac{x^k}{k!} + \frac{e^{\theta(x)x}}{(n+1)!} x^{n+1}$$

を満たす $0 < \theta(x) < 1$ が存在する.

証明. 省略 (講義の自筆ノート).

命題 5.3.3. $n \in \mathbb{N}$ とすると,

$$\log(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^k + (-1)^n \int_0^x \frac{u^n}{1+u} du \quad (-1 < x \le 1)$$

が成り立つ.

証明. 省略 (講義の自筆ノート).

定義 5.3.3. 任意の $\alpha \in \mathbb{R}$, $n \in \mathbb{N}$ に対し,

$$\binom{\alpha}{n} = \begin{cases} 1 & (n=0), \\ \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} & (n\geq 1) \end{cases}$$

を二項係数と言う.

命題 5.3.4. $\alpha \in \mathbb{R}, n \in \mathbb{N}$ とすると, 任意の -1 < x < 1 に対し,

$$(1+x)^{\alpha} = \sum_{k=0}^{n} {\alpha \choose k} x^{k} + {\alpha \choose n+1} (1+\theta(x)x)^{\alpha-n-1} x^{n+1}$$

を満たす $0 < \theta(x) < 1$ が存在する.

証明. 省略 (講義の自筆ノート).

命題 5.3.5. $\alpha, \beta > 0$ とするとき, $\alpha < \beta$ ならば,

$$\log x < x^{\alpha} < x^{\beta} < e^x \quad (x \to \infty).$$

● 三角関数, 逆三角関数

命題 5.3.6. $n \in \mathbb{N}$ とすると, 任意の $x \in \mathbb{R}$ に対し,

$$\cos x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k} + (-1)^{n+1} \frac{\cos(\theta(x)x)}{(2n+2)!} x^{2n+2}$$

を満たす $0 < \theta(x) < 1$ が存在する.

証明. 省略 (講義の自筆ノート).

命題 5.3.7. $n \in \mathbb{N}$ とすると, 任意の $x \in \mathbb{R}$ に対し,

$$\sin x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1} + (-1)^{n+1} \frac{\cos(\theta(x)x)}{(2n+3)!} x^{2n+3}$$

を満たす $0 < \theta(x) < 1$ が存在する.

証明. 省略 (講義の自筆ノート).

命題 5.3.8. $n \in \mathbb{N}$ とすると,

$$\arctan x = \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} x^{2k+1} + (-1)^{n+1} \int_0^x \frac{u^{2n+2}}{1+u^2} du \quad (-1 < x \le 1)$$

が成り立つ.

関連図書

- [1] 齋藤 正彦, 微分積分学, 東京図書, 2006年.
- [2] 杉浦 光夫, 解析入門 I(基礎数学), 東京大学出版会, 1980年.
- [3] 難波 誠, 微分積分学 (数学シリーズ), 裳華房, 1996 年.