微分積分学 [演習問題

柿澤 亮平

島根大学学術研究院 教育学系 数学科教育専攻

目次

第1章	初等関数の微積分法	1
1.1	指数関数, 対数関数, 冪関数	1
1.2	三角関数, 逆三角関数	
1.3	有理関数	9
第2章	数列の極限と実数体の連続性	13
2.1	実数体の順序完備性	13
2.2	数列の極限	16
2.3	実数体の Cauchy 完備性	20
第3章	関数の極限と連続関数	2 8
3.1	関数の極限	28
3.2	連続関数, 一様連続関数, 半連続関数	32
3.3	中間値の定理、逆関数の定理、最大値の定理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
第4章	導関数と平均値の定理	38
4.1	導関数と接線	38
4.2	平均値の定理	41
4.3	de l'Hôpital の法則	43
第5章	高階導関数と Taylor の定理	45
5.1	高階導関数と関数の極大・極小	45
5.2	Taylor の定理	48
5.3	初等関数の Taylor 多項式	50

第1章 初等関数の微積分法

1.1 指数関数, 対数関数, 冪関数

• 指数関数

- 1 次の極限値を求めよ.
 - $(1) \lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^n.$
 - (2) $\lim_{n \to \infty} \left(\frac{n}{n+1} \right)^n$.
- 2 x > 0 とするとき、次のことを証明せよ.
 - (1) 任意の $n \in \mathbb{N}, n \ge 1$ に対して

$$\left(1 + \frac{x}{n}\right)^n \le \sum_{k=0}^n \frac{x^k}{k!}$$

が成り立つ.

(2) $m \le n$ を満たす任意の $m, n \in \mathbb{N}, m, n \ge 2$ に対して

$$1 + x + \sum_{k=2}^{m} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right) \frac{x^k}{k!} \le \left(1 + \frac{x}{n}\right)^n$$

が成り立つ.

 $\boxed{3}$ R上の連続関数 $f: \mathbb{R} \to (0, \infty)$ が

$$\begin{cases} f(x+y) = f(x)f(y) & (x,y \in \mathbb{R}), \\ f(1) = e \end{cases}$$

を満たすとき,次のことを証明せよ.

(1) 任意の $r \in \mathbb{Q}$ に対して

$$f(r) = e^r$$

が成り立つ.

(2) 任意の $x \in \mathbb{R} \setminus \mathbb{Q}$ に対し, $\{r_n\}$ を $\lim_{n \to \infty} r_n = x$ となる有理数列とすると,

$$\lim_{n \to \infty} f(r_n) = e^x$$

が成り立つ.

 $\boxed{4}$ 次の数列 $\{a_n\}$ の近似値を求めるプログラムを考える.

$$a_n = \left(1 + \frac{1}{n}\right)^n \quad (n \in \mathbb{N}, \ n \ge 1)$$

```
プログラム (BASIC)

INPUT n

PRINT (1+1/n)^n

END
```

このとき, プログラムに次の(1)-(3)を入力して次の極限値を推測せよ.

$$\lim_{n\to\infty}a_n$$

- (1) n = 1000000.
- (2) n = 1500000.
- (3) n = 2000000.
- 5 次の数列 $\{s_n\}$ の近似値を求めるプログラムを考える.

$$s_n = \sum_{k=0}^n \frac{1}{k!} \quad (n \in \mathbb{N}, \ n \ge 1)$$

```
プログラム (BASIC)

INPUT n

LET s=1

FOR k=1 TO n

LET a=1

FOR b=1 TO k

LET a=a/b

NEXT b

LET s=s+a

NEXT k

PRINT s

END
```

このとき, プログラムに次の(1)-(3)を入力して次の極限値を推測せよ.

$$\lim_{n\to\infty} s_n$$

- (1) n = 10.
- (2) n = 15.
- (3) n = 20.

6 次の数列 $\{a_n\}$ の近似値を求めるプログラムを考える.

$$a_n = \left(1 - \frac{1}{n}\right)^n \quad (n \in \mathbb{N}, \ n \ge 1)$$

プログラム (BASIC)

INPUT n

PRINT (1-1/n)^n

END

このとき, プログラムに次の(1)-(3)を入力して次の極限値を推測せよ.

$$\lim_{n\to\infty}a_n$$

- (1) n = 1000000.
- (2) n = 1500000.
- (3) n = 2000000.
- 7 次の数列 $\{s_n\}$ の近似値を求めるプログラムを考える.

$$s_n = \sum_{k=0}^n \frac{(-1)^k}{k!} \quad (n \in \mathbb{N}, \ n \ge 1)$$

```
プログラム (BASIC)

INPUT n

LET s=1

FOR k=1 TO n

LET a=1

FOR b=1 TO k

LET a=-a/b

NEXT b

LET s=s+a

NEXT k

PRINT s

END
```

このとき, プログラムに次の(1)-(3)を入力して次の極限値を推測せよ.

$$\lim_{n\to\infty} s_n$$

- (1) n = 10.
- (2) n = 15.
- (3) n = 20.

● 指数関数, 対数関数, 冪関数の微積分法

- 8 次のことを証明せよ.
 - (1) 任意の $x \ge 1$ に対し、

$$\left(1 + \frac{1}{n+1}\right)^n \le \left(1 + \frac{1}{x}\right)^x \le \left(1 + \frac{1}{n}\right)^{n+1}$$

を満たす $n \in \mathbb{N}, n \ge 1$ が存在する.

$$(2) \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e.$$

- 9 次の問いに答えよ.
 - (1) f(x) を微分可能関数とするとき,

$$\int f(x)e^x dx = f(x)e^x - \int f'(x)e^x dx$$

が成り立つことを証明せよ.

(2) $n \in \mathbb{N}$ とするとき, 次の関数

$$f_n(x) = x^n e^x$$

の原始関数 $F_n(x)$ を求めよ.

- 10 次の問いに答えよ.
 - (1) f(x) を微分可能関数とするとき,

$$\int f(\log x)dx = xf(\log x) - \int f'(\log x)dx$$

が成り立つことを証明せよ.

(2) $n \in \mathbb{N}$ とするとき, 次の関数

$$f_n(x) = (\log x)^n$$

の原始関数 $F_n(x)$ を求めよ.

1.2 三角関数,逆三角関数

● 弧度法, 三角比

- 1 次のことを証明せよ.
 - (1) (Archimedes の不等式) 任意の $n \in \mathbb{N}$, $n \geq 3$ に対して

$$n\sin\frac{\pi}{n} < \pi < n\tan\frac{\pi}{n}$$

が成り立つ.

(2) (Archimedes 数) $\pi = 3.14 \cdots$. 必要ならば, (1) に計算機を援用してもよい.

【ヒント】(1) に $n = 3 \cdot 2^5$ を代入する.

- [2] AB = AC, $\angle A = \frac{\pi}{5}$ を満たす $\triangle ABC$ を考える. $\angle B$ の二等分線と辺 AC の交点を P とするとき, 次の問いに答えよ.
 - (1) $\frac{AC}{AP}$ の値を求めよ.
 - (2) $\cos \frac{\pi}{5}$, $\sin \frac{\pi}{5}$ の値を求めよ.

● 三角関数

③ 次の等式を証明せよ.

(1)
$$\begin{cases} \cos 2x = \cos^2 x - \sin^2 x \ (x \in \mathbb{R}), \\ \sin 2x = 2\sin x \cos x \ (x \in \mathbb{R}). \end{cases}$$

(2)
$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x} \left(x \in \mathbb{R}, \ x \notin \left(\mathbb{Z} + \frac{1}{4} \right) \pi \right).$$

4 次の等式を証明せよ.

(1)
$$\begin{cases} \cos 3x = -3\cos x + 4\cos^3 x \ (x \in \mathbb{R}), \\ \sin 3x = 3\sin x - 4\sin^3 x \ (x \in \mathbb{R}). \end{cases}$$

(2)
$$\tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x} \left(x \in \mathbb{R}, \ x \notin \left(\mathbb{Z} + \frac{1}{6} \right) \pi \right).$$

5 次の等式を証明せよ.

(1)
$$\begin{cases} \cos^2 \frac{x}{2} = \frac{1 + \cos x}{2} \ (x \in \mathbb{R}), \\ \sin^2 \frac{x}{2} = \frac{1 - \cos x}{2} \ (x \in \mathbb{R}). \end{cases}$$

(2)
$$\tan^2 \frac{x}{2} = \frac{1 - \cos x}{1 + \cos x} \ (x \in \mathbb{R}, \ x \notin (2\mathbb{Z} + 1)\pi).$$

6 次の問いに答えよ.

$$(1) \sin \frac{2}{5}\pi = \sin \frac{3}{5}\pi$$
を証明せよ.

(2)
$$\cos\frac{\pi}{5}$$
, $\sin\frac{\pi}{5}$ の値を求めよ.

• 逆三角関数

| 7 次の表を完成させよ.

x	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\arcsin x$									
$\arccos x$									

x	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$
$\arctan x$							

8 次の等式を証明せよ.

- (1) $\arcsin x = \arccos \sqrt{1 x^2} \ (-1 \le x \le 1).$
- (2) $\arccos x = \arcsin \sqrt{1 x^2} \ (-1 \le x \le 1).$

9 次の等式を証明せよ.

- (1) $\arctan x = \arcsin \frac{x}{\sqrt{1+x^2}} \ (x \in \mathbb{R}).$
- (2) $\arcsin x = \arctan \frac{x}{\sqrt{1-x^2}} \ (-1 < x < 1).$

| 10 | 次の等式を証明せよ.

- (1) $\arctan x = \arccos \frac{1}{\sqrt{1+x^2}} \ (x \in \mathbb{R}).$
- (2) $\arccos x = \arctan \frac{\sqrt{1-x^2}}{x}$ $(0 < x \le 1)$.

11 $-1 \le x, y \le 1$ とするとき, $x^2 + y^2 \le 1$ ならば,

$$-\frac{\pi}{2} \le \arcsin x + \arcsin y \le \frac{\pi}{2}$$

が成り立つことを証明せよ.

[12] (指定演習問題 1) $-1 \le x, y \le 1$ とするとき, $-\frac{\pi}{2} \le \arcsin x + \arcsin y \le \frac{\pi}{2}$ ならば,

$$\arcsin x + \arcsin y = \arcsin(x\sqrt{1-y^2} + y\sqrt{1-x^2})$$

が成り立つことを証明せよ.

● 三角関数, 逆三角関数の微積分法

[13] $a,b \in \mathbb{R}$ とするとき, 次の関数

$$f(x) = e^{ax} \cos bx$$
, $g(x) = e^{ax} \sin bx$

の原始関数 F(x), G(x) をそれぞれ求めよ.

14 次の原始関数列

$$F_n(x) = \int \cos^n x dx \quad (n \in \mathbb{N})$$

の漸化式を導け.

| 15 | 次の原始関数列

$$F_n(x) = \int \sin^n x dx \quad (n \in \mathbb{N})$$

の漸化式を導け.

16 次の原始関数列

$$F_n(x) = \int \tan^n x dx \quad (n \in \mathbb{N})$$

の漸化式を導け.

17 次の関数 f(x) の導関数 f'(x) を求めよ.

$$(1) f(x) = \arcsin \frac{1-x}{1+x}$$

(2)
$$f(x) = \arctan \sqrt{x^2 + 2x}$$

18 次の関数 f(x) の原始関数 F(x) を求めよ.

(1)
$$f(x) = \frac{x}{x^4 + 1}$$
.

(2)
$$f(x) = \frac{1}{x\sqrt{x^2 - 1}}$$
.

| 19|| 次の原始関数列

$$F_n(x) = \int \arcsin^n x dx \quad (n \in \mathbb{N})$$

の漸化式を導け.

|20| $a \in \mathbb{R}$, $a \neq 0$ とするとき, 次の原始関数列

$$F_n(x) = \int \frac{1}{(x^2 + a^2)^n} dx \quad (n \in \mathbb{N}, \ n \ge 1)$$

の漸化式は

$$F_n(x) = \begin{cases} \frac{1}{a} \arctan \frac{x}{a} & (n=1), \\ \frac{1}{2(n-1)a^2} \left\{ \frac{x}{(x^2+a^2)^{n-1}} + (2n-3)F_{n-1}(x) \right\} & (n \ge 2) \end{cases}$$

であることを証明せよ.

1.3 有理関数

有理関数の積分法 I

1 次の関数 f(x) の原始関数 F(x) を求めよ.

(1)
$$f(x) = \frac{1}{ax^2 + bx + c}$$
 $(a, b, c \in \mathbb{R}, a \neq 0, b^2 - 4ac \neq 0).$

(2)
$$f(x) = \frac{x}{ax^2 + bx + c}$$
 $(a, b, c \in \mathbb{R}, a \neq 0, b^2 - 4ac \neq 0).$

2 次の関数 f(x) の原始関数 F(x) を求めよ.

(1)
$$f(x) = \frac{1}{x(x-1)^2}$$
.

(2)
$$f(x) = \frac{x+2}{(x-2)(x+1)^2}$$
.

 $\boxed{3}$ 次の関数 f(x) の原始関数 F(x) を求めよ.

(1)
$$f(x) = \frac{1}{(x-1)(x^2+1)}$$
.

(2)
$$f(x) = \frac{x+1}{x(x^2+1)}$$
.

|4|| 次の問いに答えよ.

(1) 次の等式

$$\frac{1}{x^3 + 1} = \frac{ax + b}{x^2 - x + 1} + \frac{c}{x + 1}$$

を満たす $a,b,c \in \mathbb{R}$ を求めよ.

(2) 次の関数

$$f(x) = \frac{1}{x^3 + 1}$$

の原始関数 F(x) を求めよ.

5 $a \in \mathbb{R}$, $a \neq 0$ とするとき, 次の原始関数列

$$F_n(x) = \int \frac{1}{(x^3 + a^3)^n} dx \quad (n \in \mathbb{N}, \ n \ge 1)$$

の漸化式は

$$F_n(x) = \begin{cases} \frac{1}{3a^2} \left\{ \log \frac{x+a}{\sqrt{x^2 - ax + a^2}} + \sqrt{3} \arctan \left(\frac{2x-a}{\sqrt{3}a} \right) \right\} & (n=1), \\ \frac{1}{3(n-1)a^3} \left\{ \frac{x}{(x^3 + a^3)^{n-1}} + (3n-4)F_{n-1}(x) \right\} & (n \ge 2) \end{cases}$$

であることを証明せよ.

【ヒント】x = au と置換する.

6 次の関数 f(x) の原始関数 F(x) を求めよ.

(1)
$$f(x) = \frac{x}{x^6 + 1}$$
.

(2)
$$f(x) = \frac{1}{1 - x^6}$$
.

- 7 次の問いに答えよ.
 - (1) 次の等式

$$\frac{1}{x^4+1} = \frac{ax+b}{x^2+\sqrt{2}x+1} + \frac{cx+d}{x^2-\sqrt{2}x+1}$$

を満たす $a, b, c, d \in \mathbb{R}$ を求めよ.

(2) 次の関数

$$f(x) = \frac{1}{x^4 + 1}$$

の原始関数 F(x) を求めよ.

有理関数の積分法 II

8 次の原始関数列

$$F_n(x) = \int \frac{1}{\cos^n x} dx \quad (n \in \mathbb{N}, \ n \ge 1)$$

の漸化式を導け.

9 次の原始関数列

$$F_n(x) = \int \frac{1}{\sin^n x} dx \quad (n \in \mathbb{N}, \ n \ge 1)$$

の漸化式を導け.

10 次の関数 f(x) の原始関数 F(x) を求めよ.

(1)
$$f(x) = \frac{1}{\cos^3 x}$$
.

(2)
$$f(x) = \frac{1}{\sin^3 x}$$
.

 $\boxed{11}$ $a,b \in \mathbb{R}$, |b| < |a| とするとき, 次の関数

$$f(x) = \frac{1}{a + b\cos x}$$

の原始関数 F(x) を求めよ.

 $\boxed{12}$ $a \in \mathbb{R}$, $a \neq \pm 1$ とするとき, 次の関数

$$f(x) = \frac{1}{1 - 2a\cos x + a^2}$$

の原始関数 F(x) を求めよ.

13 次の関数 f(x) の原始関数 F(x) を求めよ.

(1)
$$f(x) = \frac{1}{\cos^4 x}$$
.

(2)
$$f(x) = \frac{1}{\sin^4 x}$$
.

 $\boxed{14}$ $a,b\in\mathbb{R}, ab\neq 0$ とするとき、次の関数

$$f(x) = \frac{1}{a^2 \cos^2 x + b^2 \sin^2 x}$$

の原始関数 F(x) を求めよ.

[15] $a, b \in \mathbb{R}, a^2 + b^2 \neq 0$ とするとき、次の関数

$$f(x) = \frac{\cos x}{a\cos x + b\sin x}$$

の原始関数 F(x) を求めよ.

● 有理関数の積分法 III

16 $a, b \in \mathbb{R}, a \neq b$ とするとき, 次の関数

$$f(x) = \frac{1}{\sqrt{(x-a)(x-b)}}$$

の原始関数 F(x) を求めよ.

【ヒント】
$$t^2 = \frac{x-a}{x-b}$$
 と置換する.

 $\boxed{17}$ $a, b \in \mathbb{R}, a < b$ とするとき,次の関数

$$f(x) = \frac{1}{\sqrt{(x-a)(b-x)}}$$

の原始関数 F(x) を求めよ.

【ヒント】
$$t^2 = \frac{x-a}{b-x}$$
と置換する.

[18] $a, b \in \mathbb{R}, a \neq b$ とするとき, 次の関数

$$f(x) = \sqrt{\frac{x-a}{x-b}}$$

の原始関数 F(x) を求めよ.

【ヒント】
$$t^2 = x - b$$
と置換する.

19 $a, b \in \mathbb{R}, a < b$ とするとき、次の関数

$$f(x) = \sqrt{\frac{x-a}{b-x}}$$

の原始関数 F(x) を求めよ.

【ヒント】
$$t^2 = \frac{x-a}{b-x}$$
と置換する.

 $\boxed{20}$ $a,b,c\in\mathbb{R},\,a\neq0,\,b^2-4ac\neq0,\,p,q\in\mathbb{R},\,p\neq0$ とするとき,

$$\int \frac{1}{(px+q)\sqrt{ax^2+bx+c}} dx = -\int \frac{1}{\sqrt{\alpha t^2 + \beta t + \gamma}} dt$$

を満たす $\alpha, \beta, \gamma \in \mathbb{R}$ を求めよ.

【ヒント】
$$\frac{1}{t} = px + q$$
 と置換する.

第2章 数列の極限と実数体の連続性

2.1 実数体の順序完備性

• Dedekind の公理

- [1] (**指定演習問題 2**) $\mathbb Q$ の任意の切断 (A,B) は次の (i)–(iii) のいずれか一つだけを満たすことを証明 せよ.
 - (i) $\max A$ は存在せず, $\min B$ が存在する.
 - (ii) $\max A$ が存在し、 $\min B$ は存在しない.
 - (iii) $\max A$, $\min B$ は存在しない.
- $\boxed{2}$ a > 1, $\forall r \in \mathbb{Q}$, $a \neq r^2$ とするとき, 次のことを証明せよ.
 - (1) $B = \{x \in \mathbb{Q} ; x > 0, x^2 > a\}, A = \mathbb{Q} \setminus B$ とおくと, (A, B) は \mathbb{Q} の切断である.
 - (2) max A, min B は存在しない.

• 上限公理, 下限公理

- $\boxed{3}$ 次の \mathbb{R} の部分集合 $A \subseteq \mathbb{R}$ の上限, 下限をそれぞれ求めよ.
 - (1) $A = (a, b] (a, b \in \mathbb{R}, a < b).$
 - (2) $A = [a, b) \ (a, b \in \mathbb{R}, \ a < b).$
- $\boxed{4}$ 次の \mathbb{R} の部分集合 $A \subseteq \mathbb{R}$ の上限, 下限をそれぞれ求めよ.
 - (1) $A = (a, \infty) \ (a \in \mathbb{R}).$
 - (2) $A = (-\infty, b) \ (b \in \mathbb{R}).$
- 5 $\emptyset \neq A, B \subseteq \mathbb{R}$ を \mathbb{R} の部分集合とする.

$$A + B = \{a + b \; ; \; a \in A, \; b \in B\}$$

とおくとき,次のことを証明せよ.

(1) A, B が上に有界ならば, A + B は上に有界であり,

$$\sup(A+B) = \sup A + \sup B$$

が成り立つ.

(2) A, B が下に有界ならば, A + B は下に有界であり,

$$\inf(A+B) = \inf A + \inf B$$

が成り立つ.

- $|6| \emptyset \neq A, B \subseteq \mathbb{R}$ を \mathbb{R} の部分集合とするとき, 次のことを証明せよ.
 - (1) A, B が上に有界ならば, $A \cup B$ は上に有界であり,

$$\sup(A \cup B) = \max\{\sup A, \sup B\}$$

が成り立つ.

(2) A, B が下に有界ならば, $A \cup B$ は下に有界であり,

$$\inf(A \cup B) = \min\{\inf A, \inf B\}$$

が成り立つ.

|7| (Schnirelmann 密度) $A \subseteq \mathbb{N}$ を \mathbb{N} の部分集合とする.

$$d(A) = \left\{ \frac{\sharp (A \cap \{0, 1, \dots, n-1\})}{n} \; ; \; n \in \mathbb{N}, \; n \ge 1 \right\}$$

とおくとき, 次のことを証明せよ. ただし, 北(*) は*の元の個数を表す.

- (1) $\inf d(A)$ が存在し、 $\delta(A) = \inf d(A)$ とおくと、 $0 \le \delta(A) \le 1$.
- (2) 任意の $n \in \mathbb{N}$, $n \ge 1$ に対し, $n-1 \notin A$ ならば, $0 \le \delta(A) \le 1 \frac{1}{n}$.

● 実数体の連続性 I

- 8 a > 1 とするとき, 次のことを証明せよ.
 - (1) $A = \{x \in \mathbb{R} \; ; \; x > 0, \; x^2 < a \}$ とおくと, A は上に有界である.
 - (2) $\sup A$ が存在し, $\sup A > 0$, $(\sup A)^2 = a$ を満たす.
- $\boxed{9} \ a>1,\, \forall r\in \mathbb{Q},\, a\neq r^2$ とするとき, 次のことを証明せよ.
 - (1) $A = \{x \in \mathbb{Q} \; ; \; x > 0, \; x^2 < a \}$ とおくと, A は上に有界である.
 - $(2) \sup A$ は存在しない.

2.2 数列の極限

• 実数体上のノルム・距離

- 1 次のことを証明せよ.
 - $(1) \ \sqrt{x^2} = |x| \ (x \in \mathbb{R}).$
 - $(2) -|x| \le x \le |x| \ (x \in \mathbb{R}).$
- 2 次のことを証明せよ.
 - (1) $\forall x \in \mathbb{R}, \forall a \ge 0, (|x| \le a \Leftrightarrow -a \le x \le a).$
 - (2) $\forall x \in \mathbb{R}, \forall a > 0, (|x| < a \Leftrightarrow -a < x < a).$
- 3 (中線定理) 次の等式

$$|x+y|^2 + |x-y|^2 = 2(|x|^2 + |y|^2)$$
 $(x, y \in \mathbb{R})$

が成り立つことを証明せよ.

4 次の不等式

$$||x| - |y|| \le |x - y| \quad (x, y \in \mathbb{R})$$

が成り立つことを証明せよ.

• 数列の収束・発散

- 5 次の極限値を求めよ.
 - $(1) \lim_{n \to \infty} \frac{3n-2}{2n+1}.$
 - (2) $\lim_{n \to \infty} (\sqrt{n+1} \sqrt{n}).$
- 6 次の極限値を求めよ.
 - $(1) \lim_{n \to \infty} \sqrt[n]{a} \ (a > 0).$
 - (2) $\lim_{n\to\infty} \sqrt[n]{n}$.
- 7 任意の $a \in \mathbb{R}$, $a \neq \pm 1$ に対して

$$\lim_{n \to \infty} a^n = \begin{cases} 0 & (|a| < 1), \\ \infty & (|a| > 1) \end{cases}$$

が成り立つことを証明せよ.

8 a,b>0 とし、数列 $\{a_n\}_{n\in\mathbb{N}}$ を次の漸化式

$$a_0 \ge -\frac{b}{a}, \quad a_{n+1} = \sqrt{aa_n + b} \quad (n \in \mathbb{N})$$

によって定義する. $x = \frac{a + \sqrt{a^2 + 4b}}{2}$ とおくとき, 次のことを証明せよ.

(1) 任意の $n \in \mathbb{N}$ に対して

$$|a_{n+1} - x| \le \frac{a}{x}|a_n - x|$$

が成り立つ.

- (2) $\lim_{n \to \infty} a_n = x.$
- $\boxed{9}$ (Newton の逐次近似法) a>0 とし, 数列 $\{a_n\}_{n\in\mathbb{N}}$ を次の漸化式

$$\sqrt{a} < a_0 < 3\sqrt{a}, \quad a_{n+1} = \frac{1}{2} \left(a_n + \frac{a}{a_n} \right) \quad (n \in \mathbb{N})$$

によって定義するとき,次のことを証明せよ.

(1) 任意の $n \in \mathbb{N}$ に対して $\sqrt{a} < a_n < 3\sqrt{a}$ であり, 任意の $n \in \mathbb{N}$ に対して

$$a_{n+1} - \sqrt{a} < \frac{1}{2\sqrt{a}}(a_n - \sqrt{a})^2$$

が成り立つ.

 $(2) \lim_{n \to \infty} a_n = \sqrt{a}.$

【補足】 $\{a_n\}_{n\in\mathbb{N}}$ は \sqrt{a} に2 次収束すると言う.

 $[10] \ a,b,c,d \in \mathbb{R},\ c \neq 0,\ a+d>0,\ ad-bc \neq 0,\ (a-d)^2+4bc>0$ とし、数列 $\{a_n\}_{n\in\mathbb{N}}$ を次の漸化式

$$a_0 \neq \frac{a - d - \sqrt{(a - d)^2 + 4bc}}{2c}, \quad a_{n+1} = \frac{aa_n + b}{ca_n + d} \quad (n \in \mathbb{N})$$

によって定義する. $x^{\pm}=\frac{a-d\pm\sqrt{(a-d)^2+4bc}}{2c}$ とおくとき, 次のことを証明せよ.

(1) 数列 $\{b_n\}_{n\in\mathbb{N}}$ を

$$b_n = \frac{a_n - x^+}{a_n - x^-} \quad (n \in \mathbb{N})$$

によって定義すると.

$$b_{n+1} = \frac{a + d - \sqrt{(a-d)^2 + 4bc}}{a + d + \sqrt{(a-d)^2 + 4bc}} b_n \quad (n \in \mathbb{N}).$$

 $(2) \lim_{n \to \infty} a_n = x^+.$

「11」 $a,b,c,d \in \mathbb{R}, c \neq 0, a+d \neq 0, ad-bc \neq 0, (a-d)^2+4bc=0$ とし、数列 $\{a_n\}_{n\in\mathbb{N}}$ を次の漸化式

$$a_0 \neq \frac{a-d}{2c}, \quad a_{n+1} = \frac{aa_n + b}{ca_n + d} \quad (n \in \mathbb{N})$$

によって定義する. $x = \frac{a-d}{2c}$ とおくとき, 次のことを証明せよ.

(1) 数列 $\{b_n\}_{n\in\mathbb{N}}$ を

$$b_n = \frac{1}{a_n - x} \quad (n \in \mathbb{N})$$

によって定義すると、

$$b_{n+1} - b_n = \frac{c(a+d)}{2(ad-bc)} \quad (n \in \mathbb{N}).$$

(2) $\lim_{n\to\infty} a_n = x$.

[12] (指定演習問題 3) $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ を数列とし, 数列 $\{c_n\}_{n\in\mathbb{N}}$ を

$$c_n = \begin{cases} a_m & (n = 2m), \\ b_m & (n = 2m + 1) \end{cases}$$

によって定義するとき, 次の (i), (ii) が同値であることを証明せよ.

- (i) $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ は収束し, $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$.
- (ii) $\{c_n\}_{n\in\mathbb{N}}$ は収束する

さらに, $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$, $\{c_n\}_{n\in\mathbb{N}}$ が (i) または (ii) を満たせば,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n$$

が成り立つことを証明せよ.

[13] (Cesàro の定理) $\{a_n\}_{n\geq 1}$ を収束する数列とするとき, $\left\{\frac{1}{n}\sum_{k=1}^n a_k\right\}_{n\geq 1}$ は収束し,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} a_k = \lim_{n \to \infty} a_n$$

が成り立つことを証明せよ.

 $\boxed{14} \{a_n\}_{n\geq 1}, \{b_n\}_{n\geq 1}$ を収束する数列とするとき, $\left\{\frac{1}{n}\sum_{k=1}^n a_k b_{n+1-k}\right\}_{n\geq 1}$ は収束し,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} a_k b_{n+1-k} = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n$$

が成り立つことを証明せよ.

- $\fbox{15}$ $\{a_n\}_{n\in\mathbb{N}}$ を正数列 $(\Leftrightarrow \forall n\in\mathbb{N}, a_n>0)$ とするとき, 次の $(\mathrm{i}),$ (ii) が同値であることを証明せよ.
 - (i) $\lim_{n\to\infty} a_n = \infty$.
 - (ii) $\lim_{n\to\infty}\frac{1}{a_n}=0.$
- [16] (Stolz-Cesàro の定理) $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ を数列で, 次の (i), (ii) を満たすものとする.
 - (i) $\lim_{n\to\infty} b_n = \infty$.
 - (ii) $\forall n \in \mathbb{N}, b_{n+1} b_n > 0$, かつ $\left\{ \frac{a_{n+1} a_n}{b_{n+1} b_n} \right\}_{n \in \mathbb{N}}$ は収束する.
 - このとき, $\left\{ rac{a_n}{b_n}
 ight\}_{n \in \mathbb{N}}$ は収束し,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n}$$

が成り立つことを証明せよ.

17 数列の関係 ~ を

$${a_n}_{n\in\mathbb{N}} \sim {b_n}_{n\in\mathbb{N}} \Leftrightarrow \lim_{n\to\infty} (a_n - b_n) = 0$$

によって定義するとき、 \sim は数列の**同値関係**である. つまり、次の(i)–(iii) を満たすことを証明せよ.

- (i) (反射律) $\{a_n\}_{n\in\mathbb{N}} \sim \{a_n\}_{n\in\mathbb{N}}$.
- (ii) (対称律) $\{a_n\}_{n\in\mathbb{N}} \sim \{b_n\}_{n\in\mathbb{N}} \Rightarrow \{b_n\}_{n\in\mathbb{N}} \sim \{a_n\}_{n\in\mathbb{N}}$.
- (iii) (推移律) $\{a_n\}_{n\in\mathbb{N}} \sim \{b_n\}_{n\in\mathbb{N}}, \{b_n\}_{n\in\mathbb{N}} \sim \{c_n\}_{n\in\mathbb{N}} \Rightarrow \{a_n\}_{n\in\mathbb{N}} \sim \{c_n\}_{n\in\mathbb{N}}.$
- 18 $(\varepsilon$ 論法) $a,b \in \mathbb{R}$ とするとき, 任意の x > b に対して a < x ならば, $a \le b$ であることを証明せよ.

2.3 実数体の Cauchy 完備性

• 単調収束公理

- $\boxed{1}$ $\emptyset \neq A \subseteq \mathbb{R}$ を \mathbb{R} の部分集合, $\alpha \in \mathbb{R}$ とするとき, $\alpha = \sup A$ であるための必要十分条件は, α が次の (i), (ii) を満たすことであることを証明せよ.
 - (i) α は A の上界である.
 - (ii) $\lim_{n\to\infty} a_n = \alpha$ となる A の点列 $\{a_n\}_{n\in\mathbb{N}}$ が存在する.
- [2] $\emptyset \neq A \subseteq \mathbb{R}$ を \mathbb{R} の部分集合, $\alpha \in \mathbb{R}$ とするとき, $\alpha = \inf A$ であるための必要十分条件は, α が次の (i), (ii) を満たすことであることを証明せよ.
 - (i) α は A の下界である.
 - (ii) $\lim_{n\to\infty} a_n = \alpha$ となる A の点列 $\{a_n\}_{n\in\mathbb{N}}$ が存在する.
- $\boxed{3}$ 次の \mathbb{R} の部分集合 $A \subseteq \mathbb{R}$ の上限, 下限をそれぞれ求めよ.

(1)
$$A = \left\{ \frac{2^n - 1}{2^n + 1} ; n \in \mathbb{N} \right\}.$$

(2)
$$A = \left\{ \frac{n}{n^2 + 1} ; n \in \mathbb{N} \right\}.$$

- [5] $\{a_n\}_{n\in\mathbb{N}}$ を単調増加数列とするとき、次の (i), (ii) が同値であることを証明せよ.
 - (i) $\{a_n\}_{n\in\mathbb{N}}$ は上に有界でない.
 - (ii) $\lim_{n\to\infty} a_n = \infty$.
- 6 $\{a_n\}_{n\in\mathbb{N}}$ を狭義単調増加数列, $b\in\mathbb{R}$ とするとき, $\forall n\in\mathbb{N}, a_n< b$ ならば, $\{a_n\}_{n\in\mathbb{N}}$ は収束し,

$$\bigcap_{n\in\mathbb{N}}(a_n,b]=\left[\lim_{n\to\infty}a_n,b\right]$$

が成り立つことを証明せよ.

- 7 $\{a_n\}_{n\in\mathbb{N}}$ を単調減少数列とするとき, 次の (i), (ii) が同値であることを証明せよ.
 - (i) $\{a_n\}_{n\in\mathbb{N}}$ は下に有界でない.
 - (ii) $\lim_{n\to\infty} a_n = -\infty$.
- $igl 8 \ \{a_n\}_{n\in\mathbb{N}}$ を狭義単調減少数列, $b\in\mathbb{R}$ とするとき, $\forall n\in\mathbb{N},\, a_n< b$ ならば,

$$\bigcup_{n\in\mathbb{N}} [a_n, b) = \left(\lim_{n\to\infty} a_n, b\right)$$

が成り立つことを証明せよ.

 $\boxed{9}$ x > 0 とし、数列 $\{a_n\}_{n \geq 1}$, $\{s_n\}_{n \geq 1}$ をそれぞれ

$$a_n = \left(1 + \frac{x}{n}\right)^n, \quad s_n = \sum_{k=0}^n \frac{x^k}{k!} \quad (n \in \mathbb{N}, \ n \ge 1)$$

によって定義するとき,次のことを証明せよ.

- (1) $\{a_n\}_{n\geq 1}$ は収束し, $a_n\leq s_n\leq \lim_{n\to\infty}a_n\ (n\in\mathbb{N},\ n\geq 1).$
- (2) $\{s_n\}_{n\geq 1}$ は収束し $,\lim_{n\to\infty}a_n=\lim_{n\to\infty}s_n.$
- 10 $1 < a \le e$ とし、数列 $\{a_n\}_{n \in \mathbb{N}}$ を次の漸化式

$$a_0 \le a, \quad a_{n+1} = a^{\frac{a_n}{a}} \quad (n \in \mathbb{N})$$

によって定義するとき、次のを埋めよ.

- (1) $a_0 < a$ ならば、 $\{a_n\}_{n \in \mathbb{N}}$ は狭義単調 かつ に有界である.
- (2) $\{a_n\}_{n\in\mathbb{N}}$ は収束し、 $\lim_{n\to\infty}a_n=$
- [11] (Newton の逐次近似法) a>0 とし、数列 $\{a_n\}_{n\in\mathbb{N}}$ を次の漸化式

$$a_0 > \sqrt{a}, \quad a_{n+1} = \frac{1}{2} \left(a_n + \frac{a}{a_n} \right) \quad (n \in \mathbb{N})$$

によって定義するとき、次の を埋めよ.

- (1) $\{a_n\}_{n\in\mathbb{N}}$ は狭義単調 かつ に有界である.
- (2) $\{a_n\}_{n\in\mathbb{N}}$ は収束し、 $\lim_{n\to\infty}a_n=$
- $\boxed{12}$ a > 0 とするとき, 次のことを証明せよ.
 - (1) a<1 ならば, $\{\sqrt[n]{a}\}_{n\geq 1}$ は狭義単調増加かつ上に有界である.
 - (2) a>1 ならば, $\{\sqrt[n]{a}\}_{n\geq 1}$ は狭義単調減少かつ下に有界である.
 - (3) $\{\sqrt[n]{a}\}_{n\geq 1}$ は収束し、 $\lim_{n\to\infty}\sqrt[n]{a}=1$.
- [13] a,b>0 とし、数列 $\{a_n\}_{n\in\mathbb{N}}$ を次の漸化式

$$a_0 \ge -\frac{b}{a}, \quad a_{n+1} = \sqrt{aa_n + b} \quad (n \in \mathbb{N})$$

によって定義する. $x = \frac{a + \sqrt{a^2 + 4b}}{2}$ とおくとき, 次の を埋めよ.

- (1) $a_0 < x$ ならば、 $\{a_n\}_{n \in \mathbb{N}}$ は狭義単調 かつ に有界である.
- (2) $a_0 > x$ ならば、 $\{a_n\}_{n \in \mathbb{N}}$ は狭義単調 かつ に有界である.
- (3) $\{a_n\}_{n\in\mathbb{N}}$ は収束し、 $\lim_{n\to\infty}a_n=$

$\boxed{14}$ $a,b>0,ab>1$ とし、数列 $\{a_n\}_{n\in\mathbb{N}}$ を次の漸化式
$0 < a_0 < b, a_{n+1} = -aa_n(a_n - b) (n \in \mathbb{N})$
によって定義する. $x = b - \frac{1}{a}$ とおくとき, 次の を埋めよ.
(1) $a_0 < x$ ならば、 $\{a_n\}_{n \in \mathbb{N}}$ は狭義単調 かつ に有界である.
(2) $a_0>x$ ならば, $\{a_n\}_{n\in\mathbb{N}}$ は狭義単調 かつ に有界である.
(3) $\{a_n\}_{n\in\mathbb{N}}$ は収束し、 $\lim_{n\to\infty}a_n=$
15 正数列 $\{a_n\}_{n\in\mathbb{N}}$ が
$\frac{a_n + a_{n+2}}{2} \le a_{n+1} (n \in \mathbb{N})$
を満たすとき、次の を埋めよ.
(1) $\left\{ \frac{a_{n+1}}{a_n} \right\}_{n \in \mathbb{N}}$ は単調 かつ に有界である.
$(2) \left\{ \frac{a_{n+1}}{a_n} \right\}_{n \in \mathbb{N}} は収束し, \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = $
(3) $\{a_n\}_{n\in\mathbb{N}}$ は単調 である.
$\fbox{16}$ (算術調和平均) $0 < a < b$ とし、数列 $\{a_n\}_{n \in \mathbb{N}}, \{b_n\}_{n \in \mathbb{N}}$ を次の漸化式
$a_0 = a$, $b_0 = b$, $a_{n+1} = \frac{2a_n b_n}{a_n + b_n}$, $b_{n+1} = \frac{a_n + b_n}{2}$ $(n \in \mathbb{N})$
によって定義するとき、次の を埋めよ.
(1) $\{a_n\}_{n\in\mathbb{N}}$ は狭義単調 かつ に有界である.
(2) $\{b_n\}_{n\in\mathbb{N}}$ は狭義単調 かつ に有界である.
(3) $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ は収束し, $\lim_{n\to\infty}a_n=$ $=$ $\lim_{n\to\infty}b_n$.
[17] (算術幾何平均) $0 < a < b$ とし、数列 $\{a_n\}_{n \in \mathbb{N}}$ 、 $\{b_n\}_{n \in \mathbb{N}}$ を次の漸化式
$a_0 = a, b_0 = b, a_{n+1} = \sqrt{a_n b_n}, b_{n+1} = \frac{a_n + b_n}{2} (n \in \mathbb{N})$
によって定義するとき, 次の (1) , (2) の $_{}$ を埋め, (3) を証明せよ.
(1) $\{a_n\}_{n\in\mathbb{N}}$ は狭義単調 かつ に有界である.
(2) $\{b_n\}_{n\in\mathbb{N}}$ は狭義単調 かつ に有界である.
(3) $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ は収束し, $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$.

• Archimedes の公理

[18] 次の (i), (ii) が同値であることを証明せよ.

- (i) Archimedes の公理.
- (ii) $\lim_{n \to \infty} n = \infty$.

[19] (**指定演習問題 4**) 次の (i), (ii) が同値であることを証明せよ.

- (i) Archimedes の公理.
- (ii) $\lim_{n \to \infty} \frac{1}{n} = 0.$

20 (剰余定理) 任意の $(n,d) \in \mathbb{Z} \times (\mathbb{N} \setminus \{0\})$ に対し、

$$n=dq+r$$

を満たす $(q,r) \in \mathbb{Z} \times \{0,1,\cdots,d-1\}$ が一意に存在することを証明せよ.

21 次のことを証明せよ.

- (1) 有理数と無理数の和は無理数である.
- (2) x < y を満たす任意の $x, y \in \mathbb{R}$ に対し,

を満たす $s \in \mathbb{R} \setminus \mathbb{Q}$ が存在する.

- [22] (p 進展開) $p \in \mathbb{N}, p \geq 2$ とするとき, 任意の $x \in \mathbb{R}$ に対し, 次の (i), (ii) を満たす整数列 $\{x_n\}_{n \in \mathbb{N}}$ が存在することを証明せよ.
 - (i) $x_0 \in \mathbb{Z}, x_n \in \mathbb{N}, 0 \le x_n \le p-1 \ (n \in \mathbb{N}, n \ge 1).$
 - (ii) 数列 $\{r_n\}_{n\in\mathbb{N}}$ を

$$r_n = \sum_{k=0}^n \frac{x_k}{p^k} \quad (n \in \mathbb{N})$$

によって定義すると, $\{r_n\}_{n\in\mathbb{N}}$ は $\lim_{n\to\infty}r_n=x$ となる有理数列である.

• Cantor の公理

[23] (相加相乗平均) $n \in \mathbb{N}, n \ge 1, a_k > 0 (k \in \{1, \dots, n\})$ とするとき,

$$\sqrt[n]{a_1 \cdots a_n} \le \frac{a_1 + \cdots + a_n}{n}$$

が成り立つことを証明せよ.

【ヒント】次の不等式

$$\log x \le x - 1 \quad (x > 0)$$

が成り立つことを証明してから、 $x=\frac{a_k}{\sqrt[n]{a_1\cdots a_n}}\;(k\in\{1,\cdots,n\})$ を代入する.

24 a > 0, $a \ne 1$ とするとき, 次の不等式を証明せよ.

(1)
$$a^n < \left(\frac{na+1}{n+1}\right)^{n+1} \ (n \in \mathbb{N}, \ n \ge 1).$$

(2)
$$\left(\frac{1}{a}\right)^{n+1} > \left(\frac{n+2}{na+a+1}\right)^{n+2} (n \in \mathbb{N}, n \ge 1).$$

25 数列 $\{a_n\}_{n\geq 1}$, $\{b_n\}_{n\geq 1}$ をそれぞれ

$$a_n = \left(1 + \frac{1}{n}\right)^n, \quad b_n = \left(1 + \frac{1}{n}\right)^{n+1} \quad (n \in \mathbb{N}, \ n \ge 1)$$

によって定義するとき、次のことを証明せよ.

- (1) $\{a_n\}_{n\geq 1}$ は狭義単調増加である.
- (2) $\{b_n\}_{n\geq 1}$ は狭義単調減少である.
- $(3) \lim_{n \to \infty} (b_n a_n) = 0.$

 $\fbox{26}$ (算術幾何平均) 0 < a < b < 9a とし, 数列 $\{a_n\}_{n \in \mathbb{N}},$ $\{b_n\}_{n \in \mathbb{N}}$ を次の漸化式

$$a_0 = a, \quad b_0 = b, \quad a_{n+1} = \sqrt{a_n b_n}, \quad b_{n+1} = \frac{a_n + b_n}{2} \quad (n \in \mathbb{N})$$

によって定義するとき、次のことを証明せよ.

(1) 任意の $n \in \mathbb{N}$ に対して $a \leq a_n < b_n \leq b$ であり, 任意の $n \in \mathbb{N}$ に対して

$$b_{n+1} - a_{n+1} < \frac{1}{8a}(b_n - a_n)^2$$

が成り立つ.

 $(2) \lim_{n \to \infty} (b_n - a_n) = 0.$

• Bolzano-Weierstrass の公理

- 27 $A \subseteq \mathbb{R}$ を \mathbb{R} の部分集合, $a \in \mathbb{R}$ とするとき, 次の (i), (ii) が同値であることを証明せよ.
 - (i) a は A の集積点である. つまり, 任意の r > 0 に対して

$$(a-r,a+r)\cap (A\setminus\{a\})\neq \emptyset$$

である.

- (ii) 任意の $n\in\mathbb{N}$ に対して $x_n\neq a$, かつ $\lim_{n\to\infty}x_n=a$ となる A の点列 $\{x_n\}_{n\in\mathbb{N}}$ が存在する.
- [28] $\{a_n\}_{n\in\mathbb{N}}$ を数列とするとき, $\{a_n\}_{n\in\mathbb{N}}$ が収束するための必要十分条件は, $\{a_n\}_{n\in\mathbb{N}}$ が次の (i), (ii) を満たすことであることを証明せよ.
 - (i) $\{a_n\}_{n\in\mathbb{N}}$ は有界である.
 - (ii) $\{a_n\}_{n\in\mathbb{N}}$ の集積点が存在すれば、それは一意である.

• Cauchy の公理

| 29 | 数列の関係 ~ を

$${a_n}_{n\in\mathbb{N}} \sim {b_n}_{n\in\mathbb{N}} \Leftrightarrow \lim_{n\to\infty} (a_n - b_n) = 0$$

によって定義するとき, $\{a_n\}_{n\in\mathbb{N}}\sim\{b_n\}_{n\in\mathbb{N}}$ ならば, 次の (i), (ii) が同値であることを証明せよ.

- (i) $\{a_n\}_{n\in\mathbb{N}}$ は Cauchy 列である.
- (ii) $\{b_n\}_{n\in\mathbb{N}}$ は Cauchy 列である.

30 数列 $\{s_n\}_{n>1}$ を

$$s_n = \sum_{k=1}^n \frac{1}{k^2} \quad (n \in \mathbb{N}, \ n \ge 1)$$

によって定義するとき,次のことを証明せよ.

(1) $m \le n$ を満たす任意の $m, n \in \mathbb{N}, m \ge 1$ に対して

$$s_n - s_m \le \frac{1}{m} - \frac{1}{n}$$

が成り立つ.

(2) $\{s_n\}_{n\geq 1}$ は Cauchy 列である.

31 数列 $\{s_n\}_{n>1}$ を

$$s_n = \sum_{k=1}^n \frac{1}{k} \quad (n \in \mathbb{N}, \ n \ge 1)$$

によって定義するとき、次のことを証明せよ.

(1) $m \le n$ を満たす任意の $m, n \in \mathbb{N}, m \ge 1$ に対して

$$s_n - s_m \ge 1 - \frac{m}{n}$$

が成り立つ.

(2) $\{s_n\}_{n\geq 1}$ は Cauchy 列でない.

 $\fbox{32}$ (指定演習問題 5) $\{a_n\}_{n\in\mathbb{N}}$ を数列とし, 数列 $\{s_n\}_{n\in\mathbb{N}}$ を

$$s_n = \sum_{k=0}^n |a_{k+1} - a_k| \quad (n \in \mathbb{N})$$

によって定義するとき、次のことを証明せよ.

(1) $m \le n$ を満たす任意の $m, n \in \mathbb{N}, m \ge 1$ に対して

$$|a_n - a_m| \le s_{n-1} - s_{m-1}$$

が成り立つ.

(2) $\{s_n\}_{n\in\mathbb{N}}$ が Cauchy 列ならば, $\{a_n\}_{n\in\mathbb{N}}$ は Cauchy 列である.

[33] $\{a_n\}_{n\in\mathbb{N}}$ を数列で、ある 0 < r < 1 が存在し、任意の $n \in \mathbb{N}$ 、 $n \geq 1$ に対して

$$|a_{n+1} - a_n| \le r|a_n - a_{n-1}|$$

が成り立つものとするとき、次のことを証明せよ.

(1) m < n を満たす任意の $m, n \in \mathbb{N}$ に対して

$$\sum_{k=m}^{n-1} |a_{k+1} - a_k| \le \frac{r^m - r^n}{1 - r} |a_1 - a_0|$$

が成り立つ.

(2) $\{a_n\}_{n\in\mathbb{N}}$ は Cauchy 列である.

[34] a,b>0, $ab\leq 1$ とし, 数列 $\{a_n\}_{n\in\mathbb{N}}$ を次の漸化式

$$-\sqrt{\frac{b}{a}} \leq a_0 \leq \sqrt{\frac{b}{a}}, \quad a_{n+1} = -aa_n^2 + b \quad (n \in \mathbb{N})$$

によって定義するとき、次のことを証明せよ.

(1) 任意の $n \in \mathbb{N}$, $n \ge 1$ に対して $0 \le a_n \le b$ であり, 任意の $n \in \mathbb{N}$, $n \ge 2$ に対して

$$|a_{n+1} - a_n| \le 2ab|a_n - a_{n-1}|$$

が成り立つ.

(2) $ab < \frac{1}{2}$ ならば, $\{a_n\}_{n \in \mathbb{N}}$ は収束する.

35 $a \ge 0, b > 0$ とし、数列 $\{a_n\}_{n \in \mathbb{N}}$ を次の漸化式

$$a_0 \in \mathbb{R}, \quad a_{n+1} = a + \frac{b}{a_n^2 + a_n + 1} \quad (n \in \mathbb{N})$$

によって定義するとき,次のことを証明せよ.

(1) 任意の $n \in \mathbb{N}$, $n \ge 1$ に対して $a \le a_n \le a + \frac{4}{3}b$ であり, 任意の $n \in \mathbb{N}$, $n \ge 2$ に対して

$$|a_{n+1} - a_n| \le \frac{(2a+1)b}{(a^2+a+1)^2} |a_n - a_{n-1}|$$

が成り立つ.

(2) $b < \frac{(a^2+a+1)^2}{2a+1}$ ならば, $\{a_n\}_{n\in\mathbb{N}}$ は収束する.

36 (Fibonacci 数列) 数列 $\{a_n\}_{n\in\mathbb{N}}$ を次の漸化式

$$a_0 > 0$$
, $a_1 > 0$, $a_{n+2} = a_{n+1} + a_n$ $(n \in \mathbb{N})$

によって定義するとき, $\left\{\frac{a_{n+1}}{a_n}\right\}_{n\in\mathbb{N}}$ が収束することを証明し, $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$ の値を求めよ.

第3章 関数の極限と連続関数

3.1 関数の極限

ullet x ightarrow a での極限

- 1 次の極限値を求めよ.
 - (1) $\lim_{x\to 2} \frac{x^3-8}{x^2+x-6}$.
 - (2) $\lim_{x \to 1} \frac{\sqrt{x+3} 2}{x-1}$.
- [2] (指定演習問題 6) $a,b,c \in \mathbb{R}, a \neq 0$ とし、 \mathbb{R} 上の関数 $f: \mathbb{R} \to \mathbb{R}$ を

$$f(x) = ax^2 + bx + c \quad (x \in \mathbb{R})$$

によって定義するとき、次の問いに答えよ.

(1) 任意の $y \in \mathbb{R}$ に対し、

$$f(x) - f(y) = a_1(x - y) + a_2(x - y)^2 \quad (x \in \mathbb{R})$$

を満たす $a_1, a_2 \in \mathbb{R}$ を求めよ.

- (2) 任意の $y \in \mathbb{R}$ に対し, $\lim_{x \to y} f(x) = f(y)$ となることを証明せよ.
- $\boxed{3}$ R上の関数 $f: \mathbb{R} \to \mathbb{R}$ を

$$f(x) = x^3 \quad (x \in \mathbb{R})$$

によって定義するとき,次の問いに答えよ.

(1) 任意の $y \in \mathbb{R}$ に対し,

$$f(x) - f(y) = a_1(x - y) + a_2(x - y)^2 + a_3(x - y)^3$$
 $(x \in \mathbb{R})$

を満たす $a_1, a_2, a_3 \in \mathbb{R}$ を求めよ.

- (2) 任意の $y \in \mathbb{R}$ に対し, $\lim_{x \to y} f(x) = f(y)$ となることを証明せよ.
- $\boxed{4}$ $a \neq 0$ とし、 \mathbb{R} 上の関数 $f: \mathbb{R} \to \mathbb{R}$ を

$$f(x) = \begin{cases} x & (x \in \mathbb{Q}), \\ a & (x \in \mathbb{R} \setminus \mathbb{Q}) \end{cases}$$

によって定義する. $x \to 0$ のとき, f(x) が収束するか否かを判定し, 収束すれば, 極限値を求めよ.

 $\boxed{5}$ (Dirichlet 関数) \mathbb{R} 上の関数 $f: \mathbb{R} \to \mathbb{R}$ を

$$f(x) = \begin{cases} 1 & (x \in \mathbb{Q}), \\ 0 & (x \in \mathbb{R} \setminus \mathbb{Q}) \end{cases}$$

によって定義する. 任意の $a \in \mathbb{R}$ に対し, $x \to a$ のとき, f(x) は収束しないことを証明せよ.

【ヒント】Archimedes の公理を用いる.

[6] $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f: I \setminus \{a\} \to \mathbb{R}$ を $I \setminus \{a\}$ 上の関数とする. $x \to a$ のとき, f(x) が収束 すれば, |f(x)| は収束し,

$$\lim_{x \to a} |f(x)| = \left| \lim_{x \to a} f(x) \right|$$

が成り立つことを証明せよ.

[7] $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f,g: I \setminus \{a\} \to \mathbb{R}$ を $I \setminus \{a\}$ 上の関数とする. f が $I \setminus \{a\}$ で有界, かつ $x \to a$ のとき, g(x) が 0 に収束すれば,

$$\lim_{x \to a} f(x)g(x) = 0$$

が成り立つことを証明せよ.

图 $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f,g: I \setminus \{a\} \to \mathbb{R}$ を $I \setminus \{a\}$ 上の関数とする. $x \to a$ のとき, f(x), g(x) が収束すれば,

$$\lim_{x \to a} \max\{f(x), g(x)\} = \max\left\{\lim_{x \to a} f(x), \lim_{x \to a} g(x)\right\}$$

が成り立つことを証明せよ.

[9] $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f, g: I \setminus \{a\} \to \mathbb{R}$ を $I \setminus \{a\}$ 上の関数とする. $x \to a$ のとき, f(x), g(x) が収束すれば,

$$\lim_{x \to a} \min\{f(x), g(x)\} = \min\left\{\lim_{x \to a} f(x), \lim_{x \to a} g(x)\right\}$$

が成り立つことを証明せよ.

10 R上の関数 $f: \mathbb{R} \to \mathbb{R}$ を

$$f(x) = \begin{cases} x & (x \in \mathbb{Q}), \\ 0 & (x \in \mathbb{R} \setminus \mathbb{Q}) \end{cases}$$

によって定義する. $x \to 0$ のとき, f(x) が収束するか否かを判定し, 収束すれば, 極限値を求めよ.

$\bullet x \rightarrow a \pm 0$ での極限

 $\boxed{11}$ (Heaviside 関数) \mathbb{R} 上の関数 $H: \mathbb{R} \to \mathbb{R}$ を

$$H(x) = \begin{cases} 1 & (x > 0), \\ 0 & (x < 0) \end{cases}$$

によって定義するとき, $\lim_{x\to+0} H(x) = 1$, $\lim_{x\to-0} H(x) = 0$ となることを証明せよ.

12 次の極限が存在するか否かを判定し、存在すれば、極限値を求めよ.

- $(1) \lim_{x \to 0} \frac{x}{|x|} \sin x.$
- (2) $\lim_{x \to 0} \frac{x}{|x|} \cos x.$

13 $a,b \in \mathbb{R}, a < b, f : (a,b] \to \mathbb{R}$ を (a,b] 上の単調増加関数とするとき, 次のことを証明せよ.

(1) $\lim_{n\to\infty} x_n = a$ となる (a,b] の点列 $\{x_n\}_{n\in\mathbb{N}}$ で、数列 $\{f(x_n)\}_{n\in\mathbb{N}}$ が収束するものが存在すれば、 $x\to a+0$ のとき、f(x) は収束し、

$$\lim_{x \to a+0} f(x) = \lim_{n \to \infty} f(x_n)$$

が成り立つ.

(2) f が (a,b] で下に有界ならば, $x \to a + 0$ のとき, f(x) は収束し,

$$\lim_{x \to a+0} f(x) = \inf_{a < x \le b} f(x)$$

が成り立つ.

 $\boxed{14}\ a,b\in\mathbb{R},\,a< b,\,f:[a,b) o\mathbb{R}$ を [a,b) 上の単調増加関数とするとき, 次のことを証明せよ.

(1) $\lim_{n\to\infty} x_n = b$ となる [a,b) の点列 $\{x_n\}_{n\in\mathbb{N}}$ で、数列 $\{f(x_n)\}_{n\in\mathbb{N}}$ が収束するものが存在すれば、 $x\to b-0$ のとき、f(x) は収束し、

$$\lim_{x \to b-0} f(x) = \lim_{n \to \infty} f(x_n)$$

が成り立つ.

(2) f が [a,b) で上に有界ならば, $x \rightarrow b-0$ のとき, f(x) は収束し,

$$\lim_{x \to b-0} f(x) = \sup_{a \le x < b} f(x)$$

が成り立つ.

ullet $x ightarrow \pm \infty$ での極限

 $\boxed{15}$ $\alpha>0$ とし, $(0,\infty)$ 上の関数 $f:(0,\infty)\to\mathbb{R}$ を

$$f(x) = x^{\alpha} \sin \frac{1}{x} \quad (x > 0)$$

によって定義する. $x \to \infty$ のとき, f(x) が収束するか否かを判定し, 収束すれば, 極限値を求めよ.

 $\fbox{16}$ R上の関数 $f: \mathbb{R} \to \mathbb{R}$ を

$$f(x) = x - [x] \quad (x \in \mathbb{R})$$

によって定義する. $x \to \infty$ のとき, f(x) が収束するか否かを判定し, 収束すれば, 極限値を求めよ.

3.2 連続関数、一様連続関数、半連続関数

• 連続関数

 $\boxed{1}$ R上の関数 $f: \mathbb{R} \to (0, \infty)$ を

$$f(x) = e^x \quad (x \in \mathbb{R})$$

によって定義するとき、次のことを証明せよ.

(1) 任意の $0<\varepsilon<1$ に対して $\delta(\varepsilon)=\log(1+\varepsilon)$ とおくと, $\delta(\varepsilon)>0$ であり, $|x|<\delta(\varepsilon)$ を満たす 任意の $x\in\mathbb{R}$ に対して

$$|e^x - 1| < \varepsilon$$

が成り立つ.

- (2) f は \mathbb{R} で連続である.
- $\boxed{2}$ $(0,\infty)$ 上の関数 $f:(0,\infty)\to\mathbb{R}$ を

$$f(x) = \log x \quad (x > 0)$$

によって定義するとき、次のことを証明せよ.

(1) 任意の $\varepsilon > 0$ に対して $\delta(\varepsilon) = 1 - \frac{1}{e^{\varepsilon}}$ とおくと, $\delta(\varepsilon) > 0$ であり, $|x-1| < \delta(\varepsilon)$ を満たす任意の $x \in \mathbb{R}$ に対して

$$|\log x| < \varepsilon$$

が成り立つ.

- (2) f は $(0,\infty)$ で連続である.
- ③ $I \subseteq \mathbb{R}$ を \mathbb{R} の開区間 (定理 0.3.1(i), (iv), (vi)), $a \in I$, $f: I \setminus \{a\} \to \mathbb{R}$ を $I \setminus \{a\}$ 上の関数とする. $x \to a \pm 0$ のとき, f(x) が収束し、かつ

$$\lim_{x \to a+0} f(x) \neq \lim_{x \to a-0} f(x)$$

ならば, $x \to a$ のとき, f(x) は収束しないことを証明せよ.

【補足】a を f の第一種不連続点と言う.

 $|4|(0,\infty)$ 上の関数 $f:(0,\infty)\to\mathbb{R}$ を

$$f(x) = \begin{cases} \frac{1}{q} & \left(x = \frac{p}{q} \in \mathbb{Q} : \mathbb{E}, \mathbb{$$

によって定義するとき, f は $(0,\infty)\setminus\mathbb{Q}$ で連続であるが, $(0,\infty)\cap\mathbb{Q}$ の任意の点で連続でないことを証明せよ.

● 一様連続関数

- 5 次の \mathbb{R} 上の関数fが \mathbb{R} で一様連続であるか否かを判定せよ.
 - (1) $f(x) = x^n \ (n \in \mathbb{N}, \ n \ge 1).$
 - (2) $f(x) = e^x$.
- 6 次の $(0,\infty)$ 上の関数 f が $(0,\infty)$ で一様連続であるか否かを判定せよ.
 - (1) $f(x) = x^{\alpha} \ (\alpha > 0)$.
 - (2) $f(x) = \log x$.

定義. $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f: I \to \mathbb{R}$ を I 上の関数とする.

$$\omega(f; I, \delta) = \sup_{x, y \in I, |x-y| < \delta} |f(x) - f(y)| \quad (\delta > 0)$$

によって定義される $\omega(f;I,*):(0,\infty)\to[0,\infty]=[0,\infty)\cup\{\infty\}$ を f の I での振幅と言う.

- 7 次の \mathbb{R} 上の関数 f の \mathbb{R} での振幅 $\omega(f;\mathbb{R},*)$ を求めよ.
 - (1) f(x) = x.
 - (2) $f(x) = x^2$.
- 8 $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f:I \to \mathbb{R}$ を I 上の関数とするとき, 次の (i), (ii) が同値であることを証明せよ.
 - (i) *f* は *I* で一様連続である.
 - (ii) $\lim_{\delta \to +0} \omega(f; I, \delta) = 0.$
- |9| $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $c \in \mathbb{R}$, $f,g:I \to \mathbb{R}$ を I 上の関数とするとき, 次のことを証明せよ.
 - (1) $\omega(f+g;I,\delta) \leq \omega(f;I,\delta) + \omega(g;I,\delta) \ (\delta > 0).$
 - (2) $\omega(cf; I, \delta) = |c|\omega(f; I, \delta) \ (\delta > 0).$
- |10| $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $c \in \mathbb{R}$, $f, g : I \to \mathbb{R}$ を I 上の関数とするとき, 次のことを証明せよ.
 - (1) f, g が I で一様連続ならば, f + g は I で一様連続である.
 - (2) f が I で一様連続ならば, cf は I で一様連続である.
- $\boxed{11}$ $I_1,I_2\subseteq\mathbb{R},\ I_1\cap I_2
 eq\emptyset$ を \mathbb{R} の区間, $I=I_1\cup I_2,\ f:I\to\mathbb{R}$ を I 上の関数とするとき, 次のことを 証明せよ.
 - (1) $\omega(f; I, \delta) \leq \omega(f; I_1, \delta) + \omega(f; I_2, \delta) \ (\delta > 0).$
 - (2) f が I_1 , I_2 で一様連続ならば, f は I で一様連続である.
- $\boxed{12}$ $a,b \in \mathbb{R} = \mathbb{R} \cup \{\pm \infty\}, \ a < b, \ f : [a,b] \to \mathbb{R}$ を [a,b] 上の関数とするとき, f が (a,b) で連続であり、かつ

$$\lim_{x \to a+0} f(x) = \alpha, \quad \lim_{x \to b-0} f(x) = \beta$$

となる $\alpha, \beta \in \mathbb{R}$ が存在すれば, f は [a,b] で一様連続であることを証明せよ.

| 13 次の ℝ上の関数

$$f(x) = \begin{cases} x \sin \frac{1}{x} & (x \neq 0), \\ 0 & (x = 0) \end{cases}$$

が ℝで一様連続であるか否かを判定せよ.

14 (Cauchy の関数方程式) \mathbb{R} 上の関数 $f : \mathbb{R} \to \mathbb{R}$ が

$$f(x+y) = f(x) + f(y) \quad (x, y \in \mathbb{R})$$

を満たすとき、次のことを証明せよ.

- (1) $f(ax) = af(x) \ (a \in \mathbb{Q}, \ x \in \mathbb{R}).$
- (2) f が 0 で連続ならば, f は \mathbb{R} で一様連続である.
- (3) f が 0 で連続ならば, f(x) = f(1)x ($x \in \mathbb{R}$).

【ヒント】Archimedes の公理を用いる.

15 (Cauchy の関数方程式) \mathbb{R} 上の関数 $f: \mathbb{R} \to \mathbb{R}$ が

$$f(x+y) = f(x)f(y) \quad (x, y \in \mathbb{R})$$

を満たすとき、次のことを証明せよ.

- (1) f(0) = 1.
- (2) $f(x) > 0 \ (x \in \mathbb{R}).$
- (3) f が 0 で連続ならば, $f(x) = e^{(\log f(1))x}$ $(x \in \mathbb{R})$.

「16 $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f: I \setminus \{a\} \to \mathbb{R}$ を $I \setminus \{a\}$ 上の関数で, ある L > 0, $0 < \alpha \le 1$ が存在し,

$$|f(x) - f(y)| \le L|x - y|^{\alpha} \quad (x, y \in I, \ x, y \ne a)$$

が成り立つものとする. $x \to a$ のとき, f(x) は収束することを証明せよ.

【補足】f は $I \setminus \{a\}$ で Hölder 連続 $(0 < \alpha < 1)$ または Lipschitz 連続 $(\alpha = 1)$ であると言う.

3.3 中間値の定理, 逆関数の定理, 最大値の定理

• 中間値の定理

- | 1 次の方程式の根の個数とそれらの位置を $n \in \mathbb{Z}$, n < x < n+1 の範囲で求めよ.
 - (1) $x^3 + 2x^2 3x 1 = 0$.
 - (2) $x^3 3x^2 5x + 2 = 0$.
- $\boxed{2}$ $a \in \mathbb{R}$ とするとき, 次の方程式

$$\frac{1}{x-1} + \frac{1}{x-2} + \frac{1}{x-3} = \frac{a}{x}$$

の根の個数とそれらの位置を $n \in \mathbb{Z}$, n < x < n+1 の範囲で求めよ.

3 (指定演習問題 7) (正数の n 乗根) a > 1, $n \in \mathbb{N}$, n > 1 とするとき,

$$x^n = a$$

を満たす $1 < x \le a$ が一意に存在することを証明せよ.

[4] (中間値の定理) $a,b \in \mathbb{R} = \mathbb{R} \cup \{\pm \infty\}$, a < b, $f:(a,b) \to \mathbb{R}$ を (a,b) 上の関数とするとき, f が (a,b) で連続であり, かつ

$$\lim_{x \to a+0} f(x) = \alpha, \quad \lim_{x \to b-0} f(x) = \beta$$

となる $\alpha, \beta \in \overline{\mathbb{R}}, \alpha \neq \beta$ が存在すれば, $c = \min\{\alpha, \beta\}, d = \max\{\alpha, \beta\}$ とおくと, 任意の $c < y_0 < d$ に対し,

$$f(x_0) = y_0$$

を満たす $a < x_0 < b$ が存在することを証明せよ.

- $\lfloor 5 \rfloor$ 次の (i), (ii) を満たす \mathbb{R} 上の関数 $f: \mathbb{R} \to \mathbb{R}$ を一つ挙げよ.
 - (i) f は \mathbb{R} で連続であり、かつ

$$\lim_{x \to -\infty} f(x) = \alpha, \quad \lim_{x \to \infty} f(x) = \beta$$

となる $\alpha, \beta \in \mathbb{R}$ が存在する.

(ii) $c = \min\{\alpha, \beta\}, d = \max\{\alpha, \beta\}$ とおくと、ある $c \le y_0 \le d$ が存在し、任意の $x_0 \in \mathbb{R}$ に対して

$$f(x_0) \neq y_0$$

である.

[6] (Brouwer の不動点定理) $a, b \in \mathbb{R}, \ a < b, \ f : [a, b] \rightarrow [a, b]$ を [a, b] 上の関数とするとき, f が [a, b] で連続ならば、

$$f(x_0) = x_0$$

を満たす $a \le x_0 \le b$ が存在することを証明せよ.

[7] $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f:I \to \mathbb{Q}$ を I 上の有理数値関数とするとき, f が I で連続ならば, f は I で 定数であることを証明せよ.

● 逆関数の定理

- 8 $I \subseteq \mathbb{R}$ を \mathbb{R} の区間とするとき, 次の (i), (ii) を満たす I 上の関数 $f: I \to \mathbb{R}$ を一つ挙げよ.
 - (i) f は I から \mathbb{R} への単射である.
 - (ii) f は I で狭義単調でない.

定義. 次の関数

$$\begin{cases}
\cosh x = \frac{e^x + e^{-x}}{2} & (x \in \mathbb{R}), \\
\sinh x = \frac{e^x - e^{-x}}{2} & (x \in \mathbb{R})
\end{cases}$$

によって定義される $\cosh: \mathbb{R} \to (0,\infty)$, $\sinh: \mathbb{R} \to \mathbb{R}$ をそれぞれ**双曲余弦関数**, **双曲正弦関数**と言う.

 $\boxed{9}$ $[0,\infty)$ 上の関数 $f:[0,\infty)\to\mathbb{R}$ を

$$f(x) = \cosh x \quad (x \ge 0)$$

によって定義するとき、次の問いに答えよ.

- (1) $f([0,\infty)) \subseteq \mathbb{R}$ を求めよ.
- (2) f が $[0,\infty)$ で狭義単調増加であることを証明し, $f^{-1}:f([0,\infty))\to\mathbb{R}$ を求めよ.

10 R上の関数 $f: \mathbb{R} \to \mathbb{R}$ を

$$f(x) = \sinh x \quad (x \in \mathbb{R})$$

によって定義するとき、次の問いに答えよ.

- (1) $f(\mathbb{R}) \subseteq \mathbb{R}$ を求めよ.
- (2) f が \mathbb{R} で狭義単調増加であることを証明し, $f^{-1}:f(\mathbb{R}) \to \mathbb{R}$ を求めよ.

定義. 次の関数

$$\tanh x = \frac{\sinh x}{\cosh x} \quad (x \in \mathbb{R})$$

によって定義される $\tanh: \mathbb{R} \to \mathbb{R}$ を**双曲正接関数**と言う.

 $\boxed{11}$ R上の関数 $f: \mathbb{R} \to \mathbb{R}$ を

$$f(x) = \tanh x \quad (x \in \mathbb{R})$$

によって定義するとき、次の問いに答えよ.

- (1) $f(\mathbb{R}) \subseteq \mathbb{R}$ を求めよ.
- (2) f が \mathbb{R} で狭義単調増加であることを証明し, $f^{-1}: f(\mathbb{R}) \to \mathbb{R}$ を求めよ.

● 最大値の定理

- $\boxed{12} \quad a,b \in \mathbb{R}, \, a < b, \, f:[a,b] \to \mathbb{R} \, \&ext{$\left[a,b\right]$ 上の関数とするとき}, \, f \, \&ext{$\left[a,b\right]$} \, \ddot{b} \, \ddot{c} \, \ddot{a} \, \ddot{b} \, \ddot{c} \, \ddot{b} \, \ddot{b} \, \ddot{c} \, \ddot{c}$
- $[13] \ a,b \in \mathbb{R}, \ a < b$ とするとき、次の (i), (ii) を満たす [a,b]上の関数 $f: [a,b] \to \mathbb{R}$ を一つ挙げよ.
 - (i) f の [a,b] での最大値は存在しない.
 - (ii) f の [a,b] での最小値は存在しない.
- $\boxed{14}$ $a,b \in \mathbb{R}$, a < b とするとき, 次の (i), (ii) を満たす [a,b] 上の関数 $f:[a,b] \to \mathbb{R}$ を一つ挙げよ.
 - (i) f は [a,b] で上半連続である.
 - (ii) f の [a,b] での最小値は存在しない.
- |15| $a,b \in \mathbb{R}$, a < b とするとき, 次の (i), (ii) を満たす [a,b] 上の関数 $f:[a,b] \to \mathbb{R}$ を一つ挙げよ.
 - (i) f は [a,b] で下半連続である.
 - (ii) f の [a,b] での最大値は存在しない.

第4章 導関数と平均値の定理

4.1 導関数と接線

• 導関数

- $\boxed{1}$ $I\subseteq\mathbb{R}$ を \mathbb{R} の区間, $a\in I, f:I\to\mathbb{R}$ を I 上の関数とするとき, 次の (i), (ii) が同値であることを 証明せよ.
 - (i) f は a で微分可能である.
 - (ii) I 上の関数 $\varphi: I \to \mathbb{R}$ で, a で連続であり,

$$f(x) - f(a) = \varphi(x)(x - a) \quad (x \in I)$$

を満たすものが存在する.

さらに, f が (i) または (ii) を満たせば, $f'(a) = \varphi(a)$ が成り立つことを証明せよ.

2 次の ℝ上の関数

$$f(x) = \begin{cases} x^2 & (x \ge 0), \\ -x^2 & (x \le 0) \end{cases}$$

がℝで微分可能であるか否かを判定し、微分可能ならば、f'を求めよ.

|3|a>0とするとき、次の [-a,a] 上の関数

$$f(x) = \sqrt{a^2 - x^2} \quad (-a \le x \le a)$$

が [-a,a] で微分可能であるか否かを判定し、微分可能ならば、f' を求めよ.

|4| (**指定演習問題 8**) 次の ℝ 上の関数

$$f(x) = \begin{cases} x \sin \frac{1}{x} & (x \neq 0), \\ 0 & (x = 0) \end{cases}$$

が ℝ で微分可能であるか否かを判定し、微分可能ならば、f' を求めよ.

[5] (はさみうちの原理) $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f,g,h:I \to \mathbb{R}$ を I 上の関数とするとき, 任意の $x \in I$ に対して $f(x) \leq h(x) \leq g(x)$, かつ f,g が a で微分可能であり, f(a) = g(a), f'(a) = g'(a) ならば, h は a で微分可能であり,

$$h'(a) = f'(a) = g'(a)$$

が成り立つことを証明せよ.

6 次の ℝ上の関数

$$f(x) = \begin{cases} x^2 & (x \in \mathbb{Q}), \\ 0 & (x \in \mathbb{R} \setminus \mathbb{Q}) \end{cases}$$

が0で微分可能であるか否かを判定し、微分可能ならば、f'(0)の値を求めよ.

7 $a > 0, f: (-a, a) \to \mathbb{R}$ を (-a, a) 上の関数とし, (-a, a) 上の関数 $f^e, f^o: (-a, a) \to \mathbb{R}$ をそれぞれ

$$f^e(x) = \frac{f(x) + f(-x)}{2}, \quad f^o(x) = \frac{f(x) - f(-x)}{2} \quad (-a < x < a)$$

によって定義するとき、次のことを証明せよ.

- (1) $f(x) = f^e(x) + f^o(x)$ (-a < x < a).
- (2) f^e は偶関数 ($\Leftrightarrow \forall x \in (-a,a), f^e(-x) = f^e(x)$) である.
- (3) f^o は奇関数 ($\Leftrightarrow \forall x \in (-a, a), f^o(-x) = -f^o(x)$) である.
- 8 $a>0, f:(-a,a)\to\mathbb{R}$ を(-a,a)上の微分可能関数とするとき,次のことを証明せよ.
 - (1) f が偶関数ならば, f' は奇関数である.
 - (2) f が奇関数ならば, f' は偶関数である.
- $\boxed{9}$ $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a,b,c,d:I \to \mathbb{R}$ を I 上の微分可能関数とする. I 上の関数 $A:I \to M_2(\mathbb{R})$ を

$$A(x) = \begin{pmatrix} a(x) & b(x) \\ c(x) & d(x) \end{pmatrix} \quad (x \in I)$$

によって定義するとき,

$$(\det A)'(x) = \det \begin{pmatrix} a'(x) & b'(x) \\ c(x) & d(x) \end{pmatrix} + \det \begin{pmatrix} a(x) & b(x) \\ c'(x) & d'(x) \end{pmatrix} \quad (x \in I)$$

が成り立つことを証明せよ.

• Landau の記号

定義 (Landau の記号). $a \in \mathbb{R}, \delta > 0$ とする.

- (1) $I_{\delta}(a) = \{x \in \mathbb{R} \; ; \; 0 < |x-a| < \delta \}$ を a の除外近傍という.
- (2) $f,g:I_{\delta}(a)\to\mathbb{R}$ を $I_{\delta}(a)$ 上の関数とする. $f(x)\sim g(x)$ $(x\to a)$ であるとは、

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

となることを言う. このとき, f(x) = g(x) $(x \to a)$ と書く.

- $\boxed{10}$ $a \in \mathbb{R}$, $\delta > 0$, $f, g, h : I_{\delta}(a) \to \mathbb{R}$ を $I_{\delta}(a)$ 上の関数とするとき, 次のことを証明せよ.
 - (1) $f(x) < h(x), g(x) < h(x) (x \to a)$ ならば, $f(x) + g(x) < h(x) (x \to a)$.
 - (2) f が $I_{\delta}(a)$ で有界, かつ g(x) < h(x) $(x \to a)$ ならば, f(x)g(x) < h(x) $(x \to a)$.
- 11 $a \in \mathbb{R}, \delta > 0, f, g, h : I_{\delta}(a) \to \mathbb{R}$ を $I_{\delta}(a)$ 上の関数とするとき, 次のことを証明せよ.
 - (1) (反射律) f(x) = f(x) ($x \to a$).
 - (2) (対称律) f(x) = g(x) $(x \to a)$ ならば, g(x) = f(x) $(x \to a)$.
 - (3) (推移律) f(x) = g(x), g(x) = h(x) ($x \to a$) ならば, f(x) = h(x) ($x \to a$).

4.2 平均値の定理

[1] (Rolle の定理) $f: \mathbb{R} \to \mathbb{R}$ を \mathbb{R} 上の微分可能関数とする. $x \to \pm \infty$ のとき, f(x) が収束し, かつ

$$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x)$$

が成り立てば,

$$f'(x_0) = 0$$

を満たす $x_0 \in \mathbb{R}$ が存在することを証明せよ.

 $\boxed{2}$ $a,b\in\mathbb{R},~a< b,~f,g,h:[a,b]\to\mathbb{R}$ を [a,b] で連続かつ (a,b) で微分可能な関数とするとき,

$$\det \begin{pmatrix} f'(x_0) & g'(x_0) & h'(x_0) \\ f(a) & g(a) & h(a) \\ f(b) & g(b) & h(b) \end{pmatrix} = 0$$

を満たす $a < x_0 < b$ が存在することを証明せよ.

【補足】h=1 のとき、2 は Cauchy の平均値の定理である.

- ③ (指定演習問題 9) $a,b \in \mathbb{R}, a < b, f : [a,b] \to \mathbb{R}$ を [a,b] で連続かつ (a,b) で微分可能な関数, $L \ge 0$ とするとき, 次の (i), (ii) が同値であることを証明せよ.
 - (i) $|f(x) f(y)| \le L|x y| \ (a \le x, y \le b).$
 - (ii) $|f'(x)| \le L \ (a < x < b)$.
- $\boxed{4}$ $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f: I \to \mathbb{R}$ を I 上の関数とするとき, ある $L \ge 0$, $\alpha > 1$ が存在し,

$$|f(x) - f(y)| \le L|x - y|^{\alpha} \quad (x, y \in I)$$

が成り立てば、fはIで定数であることを証明せよ.

[5] (中間値の定理) $a,b \in \mathbb{R}, a < b, f : [a,b] \to \mathbb{R}$ を [a,b] 上の微分可能関数とし, $c = \min\{f'(a), f'(b)\}$, $d = \max\{f'(a), f'(b)\}$ とおくとき, $f'(a) \neq f'(b)$ ならば, 任意の $c < y_0 < d$ に対し,

$$f'(x_0) = y_0$$

を満たす $a < x_0 < b$ が存在することを証明せよ.

6 1 < a < e とし、数列 $\{a_n\}_{n \in \mathbb{N}}$ を次の漸化式

$$a_0 > a$$
, $a_{n+1} = a^{\frac{a_n}{a}}$ $(n \in \mathbb{N})$

によって定義するとき, 次の(1)を証明し, (2), (3)の を埋めよ.

- (1) $x = a^{\frac{x}{a}}$ を満たす x > e が一意に存在する.
- (2) $a_0 < x$ ならば、 $\{a_n\}_{n \in \mathbb{N}}$ は狭義単調 かつ に有界である.
- (3) $a_0 \leq x$ ならば、 $\{a_n\}_{n \in \mathbb{N}}$ は収束し、 $\lim_{n \to \infty} a_n =$

7 a>1 とし、数列 $\{a_n\}_{n\in\mathbb{N}}$ を次の漸化式

$$a_0 > e^{-a} - a$$
, $a_{n+1} = \log(a_n + a)$ $(n \in \mathbb{N})$

によって定義するとき, 次の (1), (2) を証明し, (3)–(5) の を埋めよ

- (1) $x^- = \log(x^- + a)$ を満たす $e^{-a} a < x^- < 0$ が一意に存在する.
- (2) $x^+ = \log(x^+ + a)$ を満たす $x^+ > 0$ が一意に存在する.
- (3) $x^- < a_0 < x^+$ ならば、 $\{a_n\}_{n \in \mathbb{N}}$ は狭義単調 かつ に有界である.
- $(4) \ a_0 > x^+$ ならば、 $\{a_n\}_{n \in \mathbb{N}}$ は狭義単調 かつ に有界である.
- (5) $a_0 \geq x^-$ ならば、 $\{a_n\}_{n \in \mathbb{N}}$ は収束し、 $\lim_{n \to \infty} a_n =$
- $\boxed{8}$ $n \in \mathbb{N}$ とし、(0,1] 上の関数 $s_n:(0,1] \to \mathbb{R}$ を

$$s_n(x) = \sum_{k=0}^n \frac{(-1)^k}{k+1} x^{k+1} \quad (0 < x \le 1)$$

によって定義するとき,

$$s_{2n+1}(x) < \log(1+x) < s_{2n}(x) \quad (0 < x \le 1)$$

が成り立つことを証明せよ.

 $9 n \in \mathbb{N}$ とし、(0,1] 上の関数 $s_n : (0,1] \to \mathbb{R}$ を

$$s_n(x) = \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} x^{2k+1} \quad (0 < x \le 1)$$

によって定義するとき,

$$s_{2n+1}(x) < \arctan x < s_{2n}(x) \quad (0 < x \le 1)$$

が成り立つことを証明せよ.

 $\boxed{10}$ $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $a \in I$, $f: I \to \mathbb{R}$ を I で連続かつ $I \setminus \{a\}$ で微分可能な関数とする. $x \to a$ のとき, f'(x) が収束すれば, f は a で微分可能であり,

$$f'(a) = \lim_{x \to a} f'(x)$$

が成り立つことを証明せよ.

|11| 次の ℝ 上の関数

$$f(x) = \begin{cases} \frac{\sin x}{x} & (x \neq 0), \\ 1 & (x = 0) \end{cases}$$

がℝで微分可能であるか否かを判定し、微分可能ならば、f'を求めよ.

4.3 de l'Hôpital の法則

ullet $\frac{0}{0}$ の不定形

1 次の極限値を求めよ.

(1)
$$\lim_{x\to 0} \frac{a^x - a^{-x}}{b^x - b^{-x}}$$
 $(a, b > 0)$.

(2)
$$\lim_{x \to 0} \frac{x - \arctan x}{x^3}.$$

2 次の極限値を求めよ.

$$(1) \lim_{x \to 0} \frac{\tan x - x}{x - \sin x}.$$

$$(2) \lim_{x \to 0} \frac{\sin x - x \cos x}{x^3}.$$

3 次の極限値を求めよ.

(1)
$$\lim_{x\to 0} \left(\frac{a^x + b^x}{2}\right)^{\frac{1}{x}} (a, b > 0).$$

(2)
$$\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}}$$
.

4 次の極限値を求めよ.

(1)
$$\lim_{x \to \infty} x \log \frac{x-a}{x-b}$$
 $(a, b \in \mathbb{R}).$

(2)
$$\lim_{x \to \frac{\pi}{2} - 0} (\sin x)^{\tan x}$$
.

5 次の極限値を求めよ.

(1)
$$\lim_{x \to 0} \frac{\sin x - x \cos x}{x - \sin x}.$$

(2)
$$\lim_{x \to 0} \left\{ \frac{\log(1+x)}{x^2} - \frac{1}{x(x+1)} \right\}.$$

ullet の不定形

6 次の極限値を求めよ.

(1)
$$\lim_{x \to \infty} \frac{\log(a^x + a^{-x})}{x}$$
 $(a > 0)$.

(2)
$$\lim_{x \to +0} \frac{\log \sin x}{\log x}.$$

7 次の極限値を求めよ.

$$(1) \lim_{x \to \infty} x^{\frac{1}{x^{\alpha}}} \ (\alpha > 0).$$

$$(2) \lim_{x \to +0} x^{x^{\alpha}} \ (\alpha > 0).$$

8 次の極限値を求めよ.

(1)
$$\lim_{x \to +0} \frac{\log(a^x - 1)}{\log x}$$
 $(a > 1)$.

(2)
$$\lim_{x \to +0} \frac{\log(1 - \cos x)}{\log x}.$$

[9] $a \in \mathbb{R}$, $f:(a,\infty) \to \mathbb{R}$ を (a,∞) 上の微分可能関数とする. $x \to \infty$ のとき, f'(x) が収束するとき, 次のことを証明せよ.

(1)
$$\lim_{x \to \infty} f(x) = \begin{cases} \infty & \left(\lim_{x \to \infty} f'(x) > 0\right), \\ -\infty & \left(\lim_{x \to \infty} f'(x) < 0\right). \end{cases}$$

(2)
$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} f'(x).$$

第5章 高階導関数と Taylor の定理

5.1 高階導関数と関数の極大・極小

• n 階導関数

1 (スプライン関数) 次の ℝ上の関数

$$f(x) = \begin{cases} x^2 & (x \ge 0), \\ 0 & (x \le 0) \end{cases}$$

は \mathbb{R} で \mathbb{C}^1 級であるが, 0 で \mathbb{C}^2 級でないことを証明せよ.

2 次の ℝ 上の関数

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & (x \neq 0), \\ 0 & (x = 0) \end{cases}$$

は \mathbb{R} で微分可能であるが、0で C^1 級でないことを証明せよ.

 $\boxed{3}$ R上の関数 $f: \mathbb{R} \to \mathbb{R}$ を

$$f(x) = \begin{cases} e^{-\frac{1}{x}} & (x > 0), \\ 0 & (x \le 0) \end{cases}$$

によって定義するとき、次のことを証明せよ.

(1) 任意の $n \in \mathbb{N}$ に対して

$$f^{(n)}(x) = \begin{cases} \frac{p_n(x)}{x^{2n}} e^{-\frac{1}{x}} & (x > 0), \\ 0 & (x \le 0) \end{cases}$$

が成り立つ. ただし, p_n は次の漸化式

$$p_0(x) = 1$$
, $p_{n+1}(x) = x^2 p'_n(x) - 2nxp_n(x) + p_n(x)$ $(n \in \mathbb{N})$

によって定義される n 次以下の多項式である.

- (2) f は \mathbb{R} で C^{∞} 級である.
- $\boxed{4}$ $a>0, f:(-a,a)\to\mathbb{R}$ を(-a,a)上の C^∞ 級関数とするとき、次のことを証明せよ.
 - (1) f が偶関数ならば、任意の $n \in \mathbb{N}$ に対して $f^{(2n+1)}(0) = 0$.
 - (2) f が奇関数ならば、任意の $n \in \mathbb{N}$ に対して $f^{(2n)}(0) = 0$.

[5] (Legendre 多項式) \mathbb{R} 上の関数列 $\{P_n\}_{n\in\mathbb{N}}$ を

$$P_n(x) = \frac{1}{(2n)!!} \frac{d^n}{dx^n} (x^2 - 1)^n \quad (n \in \mathbb{N}, \ x \in \mathbb{R})$$

によって定義するとき、次のことを証明せよ.

- (1) P_n は n 次多項式であり、 P_n の最高次の係数は $\frac{1}{2^n}\sum_{k=0}^n \binom{n}{k}^2$ である.
- (2) n 個の $P_n(x) = 0$ の (-1,1) での根 $x_1^{(n)} < \cdots < x_n^{(n)}$ が存在し、

$$x_{k-1}^{(n-1)} < x_k^{(n)} < x_k^{(n-1)} \quad (k \in \{1, \dots, n\})$$

が成り立つ. ただし, $x_0^{(n-1)} = -1$, $x_n^{(n-1)} = 1$.

 $\boxed{6}$ (Hermite 多項式) \mathbb{R} 上の関数列 $\{H_n\}_{n\in\mathbb{N}}$ を

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2} \quad (n \in \mathbb{N}, \ x \in \mathbb{R})$$

によって定義するとき,次のことを証明せよ.

- (1) H_n は n 次多項式であり, H_n の最高次の係数は 2^n である.
- (2) n 個の $H_n(x) = 0$ の \mathbb{R} での根 $x_1^{(n)} < \cdots < x_n^{(n)}$ が存在し、

$$x_{k-1}^{(n-1)} < x_k^{(n)} < x_k^{(n-1)} \quad (k \in \{1, \dots, n\})$$

が成り立つ. ただし, $x_0^{(n-1)} = -\infty$, $x_n^{(n-1)} = \infty$.

 $\boxed{7}$ (Laguerre 多項式) \mathbb{R} 上の関数列 $\{L_n\}_{n\in\mathbb{N}}$ を

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x}) \quad (n \in \mathbb{N}, \ x \in \mathbb{R})$$

によって定義するとき、次のことを証明せよ.

(1) L_n は n 次多項式であり、

$$L_n(x) = \sum_{k=0}^{n} \binom{n}{k} \frac{(-x)^k}{k!} \quad (x \in \mathbb{R})$$

が成り立つ.

(2) n 個の $L_n(x) = 0$ の \mathbb{R} での根 $x_1^{(n)} < \cdots < x_n^{(n)}$ が存在し、

$$x_{k-1}^{(n-1)} < x_k^{(n)} < x_k^{(n-1)} \quad (k \in \{1, \cdots, n\})$$

が成り立つ. ただし, $x_0^{(n-1)} = -\infty$, $x_n^{(n-1)} = \infty$.

● 関数の極大・極小

定義. $I \subseteq \mathbb{R}$ を \mathbb{R} の開区間 (定理 0.3.1(i), (iv), (vi)), $f: I \to \mathbb{R}$ を I 上の微分可能関数とする.

(1) f が $a \in I$ で (上から下への) **変曲**であるとは、ある $\delta > 0$ が存在し、 $a - \delta < x < a < x' < a + \delta$ を満たす任意の $x, x' \in I$ に対して

$$\frac{f(a) - f(x)}{a - x} > f'(a), \quad \frac{f(x') - f(a)}{x' - a} > f'(a)$$

が成り立つことを言う.

(2) f が $a \in I$ で (下から上への) **変曲**であるとは、ある $\delta > 0$ が存在し、 $a - \delta < x < a < x' < a + \delta$ を満たす任意の $x, x' \in I$ に対して

$$\frac{f(a) - f(x)}{a - x} < f'(a), \quad \frac{f(x') - f(a)}{x' - a} < f'(a)$$

が成り立つことを言う.

- 图 $I \subseteq \mathbb{R}$ を \mathbb{R} の開区間 (定理 0.3.1(i), (iv), (vi)), $a \in I$, $f:I \to \mathbb{R}$ を I 上の C^2 級関数とするとき, f が a で変曲ならば, f''(a) = 0 であることを証明せよ.
- $\boxed{9}$ $a,b,c \in \mathbb{R}$, a < b とするとき, 次の \mathbb{R} 上の関数

$$f(x) = \frac{1}{3}x^3 - \frac{1}{2}(a+b)x^2 + abx + c \quad (x \in \mathbb{R})$$

が極大、極小、変曲となる点をそれぞれ求めよ.

|10||次の (0,∞) 上の関数

$$f(x) = \frac{\log x}{x} \quad (x > 0)$$

が極大、極小、変曲となる点をそれぞれ求めよ.

| 11 次の ℝ上の関数

$$f(x) = e^{-\frac{x^2}{2}} \quad (x \in \mathbb{R})$$

が極大,極小,変曲となる点をそれぞれ求めよ.

12 a > 0 とするとき、次の \mathbb{R} 上の関数

$$f(x) = \frac{x}{x^2 + a^2} \quad (x \in \mathbb{R})$$

が極大,極小,変曲となる点をそれぞれ求めよ.

5.2 Taylor の定理

 $\boxed{1}$ $n \in \mathbb{N}, a_k \in \mathbb{R} \ (k \in \{0, 1, \dots, n\}), a_n \neq 0 \ \text{と} \ \text{し},$ 多項式 $p : \mathbb{R} \to \mathbb{R} \$ を

$$p(x) = a_n x^n + \dots + a_1 x_1 + a_0 \quad (x \in \mathbb{R})$$

によって定義する. 任意の $a \in \mathbb{R}$ に対し,

$$p(x) = b_n(x-a)^n + \dots + b_1(x-a) + b_0 \quad (x \in \mathbb{R})$$

を満たす $b_k \in \mathbb{R}$ $(k \in \{0, 1, \dots, n\})$ を求めよ.

- 2 $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f: I \to \mathbb{R}$ を I 上の C^2 級関数とするとき, 次の (i)–(iii) が互いに同値であることを証明せよ.
 - (i) f は I で**下に凸**である. つまり, 任意の $a,b \in I$ に対して

$$f((1-t)a+tb) \le (1-t)f(a) + tf(b) \quad (0 \le t \le 1)$$

が成り立つ.

(ii) a < b を満たす任意の $a, b \in I$ に対して

$$\frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(a)}{b - a} \le \frac{f(b) - f(x)}{b - x} \quad (a < x < b)$$

が成り立つ.

- (iii) $-f'' \le 0$. つまり, $\forall x \in I, -f''(x) \le 0$.
- ③ $I \subseteq \mathbb{R}$ を \mathbb{R} の区間, $f: I \to \mathbb{R}$ を I 上の C^2 級関数とするとき, 次の (i)–(iii) が互いに同値であることを証明せよ.
 - (i) f は I で上に凸である. つまり, 任意の $a,b \in I$ に対して

$$f((1-t)a + tb) \ge (1-t)f(a) + tf(b) \quad (0 \le t \le 1)$$

が成り立つ.

(ii) a < b を満たす任意の $a, b \in I$ に対して

$$\frac{f(x) - f(a)}{x - a} \ge \frac{f(b) - f(a)}{b - a} \ge \frac{f(b) - f(x)}{b - x} \quad (a < x < b)$$

が成り立つ.

- (iii) $-f'' \ge 0$. つまり, $\forall x \in I, -f''(x) \ge 0$.
- 4 (Jordan の不等式) 次の不等式

$$\frac{2}{\pi}x \le \sin x \le x \quad \left(0 \le x \le \frac{\pi}{2}\right)$$

が成り立つことを証明せよ.

[5] (1 階前進差分) $a, b \in \mathbb{R}, a < b, f : [a, b] \to \mathbb{R}$ を [a, b] 上の C^2 級関数とし、

$$\Delta_h f(x) = f(x+h) - f(x) \quad (a < x < b, \ 0 < h \le \min\{x - a, b - x\})$$

とおくとき,

$$\left| \frac{\Delta_h f(x)}{h} - f'(x) \right| \le \frac{1}{2} \max_{x \in [a,b]} |f''(x)| h \quad (a < x < b, \ 0 < h \le \min\{x - a, b - x\})$$

が成り立つことを証明せよ.

[6] (指定演習問題 10) (1 階中心差分) $a,b \in \mathbb{R}, a < b, f : [a,b] \to \mathbb{R}$ を [a,b] 上の C^3 級関数とし、

$$\delta_h f(x) = f(x+h) - f(x-h) \quad (a < x < b, \ 0 < h \le \min\{x - a, b - x\})$$

とおくとき.

$$\left| \frac{\delta_h f(x)}{2h} - f'(x) \right| \le \frac{1}{6} \max_{x \in [a,b]} |f'''(x)| h^2 \quad (a < x < b, \ 0 < h \le \min\{x - a, b - x\})$$

が成り立つことを証明せよ.

[7] (中間値の定理) $a, b \in \mathbb{R}$, $a < b, f : [a, b] \to \mathbb{R}$ を [a, b] 上の連続関数とし, $c = \min\{f(a), f(b)\}$, $d = \max\{f(a), f(b)\}$ とおくとき, f が [a, b] で狭義単調ならば, 任意の $c < y_0 < d$ に対し,

$$f(x_0) = y_0$$

を満たす $a < x_0 < b$ が一意に存在することを証明せよ.

- 图 (Newton の逐次近似法) $a,b \in \mathbb{R}$, a < b, $f : [a,b] \to \mathbb{R}$ を [a,b] 上の C^2 級関数で, 次の (i)–(iii) を満たすものとする.
 - (i) f(a) < 0 < f(b).
 - (ii) f' > 0. つまり, $\forall x \in [a, b], f'(x) > 0$.
 - (iii) f'' > 0. $\supset \sharp h$, $\forall x \in [a, b]$, f''(x) > 0.

数列 $\{x_n\}_{n\in\mathbb{N}}$ を次の漸化式

$$a < x_0 \le b$$
, $f(x_0) > 0$, $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ $(n \in \mathbb{N})$

によって定義し, $a < \alpha < b$ を f(x) = 0 の解とする.

$$c = \frac{1}{2} \max_{x \in [a,b]} \frac{f''(x)}{f'(x)}$$

とおくとき,次のことを証明せよ.

(1) 任意の $n \in \mathbb{N}$ に対して

$$|x_{n+1} - \alpha| \le c|x_n - \alpha|^2$$

が成り立つ.

(2)
$$|x_0 - \alpha| < \frac{1}{c}$$
 ならば, $\lim_{n \to \infty} x_n = \alpha$.

5.3 初等関数の Taylor 多項式

● 幾何級数, 指数関数, 対数関数, 冪関数

 $\boxed{1}$ $n \in \mathbb{N}$ とし、 $(0,\infty)$ 上の関数 $s_n:(0,\infty) \to \mathbb{R}$ を

$$s_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$$
 $(x > 0)$

によって定義するとき,

$$s_{n+1}(x) < e^x < s_n(x) + \frac{x^{n+1}}{(n+1)!}e^x \quad (x > 0)$$

が成り立つことを証明せよ.

- 2 次のことを証明せよ.
 - (1) $e = 2.718 \cdots$
 - (2) e は無理数である.
- 3 次のことを証明せよ.
 - (1) $\sqrt{5} = 2.236 \cdots$
 - (2) $\sqrt[3]{28} = 3.0365 \cdots$
- 4 次の関数 f(x) を

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + o(x^3) \quad (x \to 0)$$

で近似せよ.

(1)
$$f(x) = \frac{x}{e^x - 1}$$
.

(2)
$$f(x) = \frac{1}{\log(1+x)} - \frac{1}{x}$$
.

5 次の極限値を求めよ.

$$(1) \lim_{x\to 0} \frac{1}{x^5} \left(e^x - 1 - x - \frac{1}{2}x^2 - \frac{1}{6}x^3 - \frac{1}{24}x^4 \right).$$

(2)
$$\lim_{x \to 0} \frac{1}{x} \left(\frac{1}{\sqrt{1+bx}} - \frac{1}{\sqrt{1+ax}} \right) (a, b \in \mathbb{R}, \ a \neq b).$$

● 三角関数, 逆三角関数

 $\begin{bmatrix} 6 \end{bmatrix}$ $n \in \mathbb{N}$ とし、 $\left(0, \frac{\pi}{2}\right]$ 上の関数 $s_n: \left(0, \frac{\pi}{2}\right] \to \mathbb{R}$ を

$$s_n(x) = \sum_{k=0}^n \frac{(-1)^k}{(2k+1)!} x^{2k+1} \quad \left(0 < x \le \frac{\pi}{2}\right)$$

によって定義するとき,

$$s_{2n+1}(x) < \sin x < s_{2n}(x) \quad \left(0 < x \le \frac{\pi}{2}\right)$$

が成り立つことを証明せよ.

- 7 次のことを証明せよ.
 - (1) $\sin 1 = 0.841 \cdots$.
 - (2) sin 1 は無理数である.
- 8 次の関数 f(x) を

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + o(x^5) \quad (x \to 0)$$

で近似せよ.

(1)
$$f(x) = \frac{1}{\sin x} - \frac{1}{x}$$
.

(2)
$$f(x) = \frac{1}{\arctan x} - \frac{1}{x}$$
.

9 次の極限値を求めよ.

(1)
$$\lim_{x \to 0} \left(\frac{1}{1 - \cos x} - \frac{2}{x^2} \right)$$
.

$$(2) \lim_{x \to 0} \frac{\log \sin x - \log x}{x^2}.$$

関連図書

- [1] 齋藤 正彦, 微分積分学, 東京図書, 2006年.
- [2] 杉浦 光夫, 解析入門 I(基礎数学), 東京大学出版会, 1980年.
- [3] 難波 誠, 微分積分学 (数学シリーズ), 裳華房, 1996 年.